DOI QR코드

DOI QR Code

분광분석법을 이용한 형질전환 작물 판별 기술 현황

Current Status of GM Crop Discrimination Technology Using Spectroscopy

  • 손수인 (농촌진흥청 국립농업과학원 농업생명자원부 생물안전성과) ;
  • 오영주 ((주)미래환경생태연구소) ;
  • 조우석 (농촌진흥청 국립농업과학원 농업생명자원부 생물안전성과) ;
  • 조윤성 (농촌진흥청 국립농업과학원 농업생명자원부 생물안전성과) ;
  • 신은경 (농촌진흥청 국립농업과학원 농업생명자원부 생물안전성과) ;
  • 강현중 (농촌진흥청 국립농업과학원 농업생명자원부 생물안전성과)
  • Sohn, Soo-In (Biosafety Division, National Institute of Agricultural Sciences) ;
  • Oh, Young-Ju (Institue for Future Environmental Ecology Co., Ltd.) ;
  • Cho, Woo-Suk (Biosafety Division, National Institute of Agricultural Sciences) ;
  • Cho, Yoonsung (Biosafety Division, National Institute of Agricultural Sciences) ;
  • Shin, Eun-Kyoung (Biosafety Division, National Institute of Agricultural Sciences) ;
  • Kang, Hyeon-jung (Biosafety Division, National Institute of Agricultural Sciences)
  • 투고 : 2020.09.03
  • 심사 : 2020.09.17
  • 발행 : 2020.09.30

초록

BACKGROUND: This paper describes the successful discrimination of GM crops from the respective wild type (WT) controls using spectroscopy and chemometric analysis. Despite the many benefits that GM crops, their development has raised concerns, particularly about their potential negative effects on food production and the environment. From this point of view, the introduction of GM crops into the market requires the development of rapid and accurate identification technologies to ensure consumer safety. METHODS AND RESULTS: The development of a GM crop discrimination model using spectroscopy involved the pre-processing of the collected spectral information, the selection of a discriminant model, and the verification of errors. Examples of GM versus WT discrimination using spectroscopy are available for soybeans, tomatoes, corn, sugarcane, soybean oil, canola oil, rice, and wheat. Here, we found that not only discrimination but also cultivar grouping was possible. CONCLUSION: Since for the determination of GM crop there is no pre-defined pre-processing method or calibration model, it is extremely important to select the appropriate ones to increase the accuracy in a case-by-case basis.

키워드

참고문헌

  1. van Rensburg JBJ (2007) First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bttransgenic maize. South African Journal of Plant and Soil, 24(3), 147-151. https://doi.org/10.1080/02571862.2007.10634798.
  2. Aluru M, Xu Y, Guo R, Wang Z, Li S, White W, Wang K, Rodermel S (2008) Generation of transgenic maize with enhanced provitamin A content. Journal of Experimental Botany, 59(13), 3551-3562. https://doi.org/10.1093/jxb/ern212.
  3. Feng X, Zhao Y, Zhang C, Cheng P, He Y (2017) Discrimination of transgenic maize kernel using NIR hyperspectral imaging and multivariate data analysis. Sensors, 17(8), 1894. https://doi.org/10.3390/s17081894.
  4. Hubner P, Studer E, Luthy J (1999) Quantitative competitive PCR for the detection of genetically modified organisms in food. Food Control, 10(6), 353-358. https://doi.org/10.1016/S0956-7135(99)00074-2.
  5. Taverniers I, Van Bockstaele E, De Loose M (2004) Cloned plasmid DNA fragments as calibrators for controlling GMOs: Diferent real-time duplex quantitative PCR methods. Analytical and Bioanalytical Chemistry, 378(5), 1198-1207. https://doi.org/10.1007/s00216-003-2372-5.
  6. Zimmermann A, Luthy J, Pauli U (2000) Event specific transgene detection in Bt11 corn by quantitative PCR at the integration site. Lebensmittel-Wissenschaft Technologie-Food Science and Technology, 33(3), 210-216. https://doi.org/10.1006/fstl.2000.0637.
  7. Brunnert HJ, Spener F, Borchers T (2001) PCR-ELISA for the CaMV-35S promoter as a screening method for genetically modified Roundup Ready spybeans. European Food Research and Technology, 213(4-5), 366-371. https://doi.org/10.1007/s002170100371.
  8. Liu G, Su W, Xu Q, Long M, Zhou J, Song S (2004) Liquid-phase hybridization based PCR-ELISA for detection of genetically modified organisms in food. Food Control, 15(4), 303-306. https://doi.org/10.1016/S0956-7135(03)00081-1.
  9. Mannelli I, Minunni M, Tombelli S, Mascini M (2003) Bulk acoustic wave affinity biosensor for genetically modified organisms detection. IEEE Sensors Journal, 3(4), 369-375. https://doi.org/10.1109/JSEN.2003.815793.
  10. Guiseppi-Elie A (2001) Biochip platforms for DNA diagnostics. Biotechnology, 12, 41-47.
  11. Leimanis S, Hernandez M, Fernandez S, Boyer F, Burns M, Bruderer S, Glouden T, Harris N, Kaeppeli O et al. (2006) A microarray-based detection system for genetically modified(GM) food ingredients. Plant Molecular Biology, 61(1-2), 123-139. https://doi.org/10.1007/s11103-005-6173-4.
  12. Wang J (2000) From DNA biosensors to gene chips. Nucleic Acids Research, 28(16), 3011-3016. https://doi.org/10.1093/nar/28.16.3011.
  13. Obeid PJ, Christopoulos TK, Ionnou PC (2004) Rapid analysis of genetically modified organisms by inhouse developed capillary electrophoresis chip and laser-induced fluorescence system. Electrophoresis, 25(6), 922-930. https://doi.org/10.1002/elps.200305772.
  14. Jastrzȩbska A, Brudka B, Szumanski T, Szlyk E (2003) Determination of phosphorus in food samples by Xray fluorescence spectrometry and standard spectrophotometric method. Food Chemistry, 83(3), 463-467. https://doi.org/10.1016/S0308-8146(03)00225-5.
  15. Redig P, Schmulling T, Van Onckelen H (1996) Analysis of cytokinin metabolism in ipt transgenic tobacco by liquid chromatography-tandem mass spectrometry. Plant Physiology, 112(1), 141-148. https://doi.org/10.1104/pp.112.1.141.
  16. Chen J, Arnold MA, Small GW (2004) Comparison of combination and first overtone spectral regions for near-infrared calibration models for glucose and other biomolecules in aqueous solutions. Analytical Chemistry, 76(18), 5405-5413. https://doi.org/10.1021/ac0498056.
  17. Chen H, Pan T, Chen J, Lu Q (2011) Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemometrics and Intelligent Laboratory Systems, 107(1), 139-146. https://doi.org/10.1016/j.chemolab. 2011.02.008.
  18. Pan T, Chen Z, Chen J, Liu Z (2012) Near-infrared spectroscopy with waveband selection stability for the determination of COD in sugar refinery wastewater. Analytical Methods, 4(4), 1046-1052. https://doi.org/10.1039/C2AY05856A.
  19. Pan T, Liu J, Chen, J, Zhang G, Zhao Y (2013) Rapid determination of preliminary thalassaemia screening indicators based on near infrared spectroscopy with wavelength selection stability. Analytical Methods, 5(17), 4355-4362. https://doi.org/10.1039/C3AY40732B.
  20. Liu Z, Liu B, Pan T, Yang J (2013) Determination of amino acid nitrogen in tuber mustard using nearinfrared spectroscopy with waveband selection stability. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 269-274. https://doi.org/10.1016/j.saa.2012.10.006.
  21. Tao P, Zhen-Tao W, Hua-Zhou C (2012) Waveband optimization for near-infrared spectroscopic analysis of total nitrogen in soil. Chinese Journal of Analytical Chemistry, 40(6), 920-924. https://doi.org/10.3724/SP.J.1096.2012.10987.
  22. Jiang JH, Berry RJ, Siesler HW, Ozaki Y (2002) Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and nearinfrared spectroscopic data. Analytical Chemistry, 74 (14), 3555-3565. https://doi.org/10.1021/ac011177u.
  23. Du YP, Liang YZ, Jiang JH, Berry RJ, Ozaki Y (2004) Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Analytica Chimica Acta, 501(2), 183-191. https://doi.org/10.1016/j.aca.2003.09.041.
  24. Xie J, Pan T, Chen JM, Chen HZ, Ren XH (2010) Joint optimization of Savitzky-Golay smoothing models and partial least squares factors for near infrared spectroscopic analysis of serum glucose. Chinese Journal of Analytical Chemistry, 38, 342-346. https://doi.org/10.3724/SP.J.1096.2010.00342.
  25. Pan T, Liu J, Chen J, Zhang G, Zhao Y (2013) Rapid determination of preliminary thalassaemia screening indicators based on near-infrared spectroscopy with wavelength selection stability. Analytical Methods, 5(17), 4355-4362. https://doi.org/10.1039/C3AY40732B.
  26. Xie L, Ying Y, Ying T, Yu H, Fu X (2007) Discrimination of transgenic tomatoes based on visible/nearinfrared spectra. Analytica Chimica Acta, 584(2), 379-384. https://doi.org/10.1016/j.aca.2006.11.071.
  27. Davies AMC (2005) An introduction to near infrared spectroscopy. NIR News, 16(7), 9-11. https://doi.org/10.1255/nirn.853.
  28. Hof M (2003) Basics of optical spectroscopy. Handbook of Spectroscopy, 1, 39-47.
  29. Abrams SM, Shenk JS, Westerhaus MO, Barton FE (1987) Determination of forage quality by nearinfrared reflectance spectroscopy: Efficiency of broad based calibration equations. Journal of Diary Science, 70(4), 806-813. https://doi.org/10.3168/jds.S0022-0302(87)80077-2.
  30. Clarke MA, Arias ER, McDonals-Lewis C (1992) Near infrared analysis in the sugarcane factory. pp. 244-264, Sugary Azucar Press at Ruspam Communication Inc., LA, USA.
  31. Oh S, Lee MC, Choi YM, Lee S, Oh M, Ali A, Chae B, Hyun DY (2017) Development of near-infrared spectroscopy(NIRS) model for amylose and crude protein contents analysis in rice germplasm. Korean Journal of Plant Resources, 30(1), 38-49. https://doi.org/10.7732/kjpr.2016.30.1.038.
  32. Williams P, Norris K (1987) Near-Infrared technology in agricultural and food industries, p. 330, American Association of Cereal Chemists, Inc., St. Paul, Minnesota, USA. ISBN: 091325049X.
  33. Chung HI, Kim HJ (2000) Near-infrared spectroscopy: principles. Analytical Science & Technology, 13(1), 1001-1014.
  34. Kim YB (1996) NIRS for food analysis(I). Buletin of Food Technology, 9(1), 24-37.
  35. Lafargue ME, Feinberg M, Daudin JJ, Rutledge DN (2003) Detection of heterogeneous wheat samples using near infrared spectroscopy. Journal of Near Infrared Spectroscopy, 11(2), 109-121. https://doi.org/10.1255/jnirs.359.
  36. Purwanto YA, Sari HP, Budiastra IW (2015) Effects of preprocessing techniques in developing a calibration model for soluble solid and acidity in 'Gedong Gincu' mango using NIR spectroscopy. International Journal of Engineering and Technology, 7(5), 1921-1927.
  37. Geladi P, MacDougall D, Martens H (1985) Linearization and scatter-correction for near-infra red reflectance spectra of meat. Applied Spectroscopy, 39(3), 491-500. https://doi.org/10.1366/0003702854248656
  38. Dhanoa MS, Lister SJ, Sanderson R, Barnes RJ (1994) The link between multiplicative scatter correction (MSC) and standard normal variate (SNV) transformations of NIR spectra. Journal of Near Infrared Spectroscopy, 2(1), 43-47. https://doi.org/10.1255/jnirs.30.
  39. Fearn T, Riccicoli C, Garrido-Varo A, Guerrero-Ginel JE (2009) On the geometry of SNV and MSC. Chemometrics and Intelligent Laboratory Systems, 96(1), 22-26. https://doi.org/10.1016/j.chemolab.2008.11.006.
  40. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Applied Spectroscopy, 43(5), 772-777. https://doi.org/10.1366/0003702894202201.
  41. Savitzky A, Golay MJE (1964) Smoothing and identification of data by simplified least squares procedure. Analytical Chemistry, 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
  42. Luo J, Ying K, Bai J (2005) Savitzky-Golay smoothing and differentiation filter for even number data. Signal Processing, 85(7), 1429-1434. https://doi.org/10.1016/j.sigpro.2005.02.002.
  43. Rinnan A, Norgaard L, van den Berg F, Thygesen J, Bro R, Engelsen SB (2009) Infrared spectroscopy for food quality analysis and control. pp 38-39, Elsevier Inc. ISBN: 978-0-12-374136-3.
  44. Sternberg JC, Stillo HS, Schwendeman RH (1960) Spectrophotometric analysis of multicomponent systems using the least squares method in matrix form. Ergosterol irradiation system. Analytical Chemistry, 32(1), 84-90. https://doi.org/10.1021/ac60157a025.
  45. Wold S (1975) Soft modeling by latent variables; the non-linear iterative partial least squares(NIPALS) approach. Journal of Applied Probability, 12(1), 117-142. https://doi.org/10.1017/S0021900200047604.
  46. Hammateenejad B, Akhind M, Samar F (2007) A comparative study between PCR and PLS in simultaneous spectrophotometric determination of dophenylamine, aniline, and phenol: Effects of wavelength selection. Spectrochimica Acta, Part A: Moleculr and Biomolecular Spectroscopy, 67(3-4), 958-965. https://doi.org/10.1016/j.saa.2006.09.014.
  47. Muniz R, Perez MA, De La Torre C, Carleos CE, Corral N, Baro JA (2009) Comparison of principal component regression (PCR) and partial least suare (PLS) methods in prediction of raw milk composition by VIS-NIR spectrometry. Application to development of on-line sensors for fat, protein and lactose contents. pp. 2564-2668, XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal. ISBN: 978-963-88410-0-1.
  48. Naes T, Irgens C, Martens H (1986) Comparison of linear statistical methods for calibration of NIR instruments. Journal of the Royal Statistical Society: Series C (Applied Statistics), 35(2), 195-206. https://doi.org/10.2307/2347270.
  49. Kalivas JH, Gerperline PJ (2006) Practical guide to chemometrics, ed: Germperline P, pp. 105-166, 2nd edition, CRC Taylor & Francis.
  50. Despagne F, Massart DL (1998) Neural networks in multivariate calibration. Analyst, 123(11), 157R-178R. https://doi.org/10.1039/A805562I.
  51. Mangasarian OL, Musicant DR (2001) Lagrangian Support Vector Machines. Journal of Machine Learning Research, 1, 161-177. https://doi.org/10.1162/15324430152748218.
  52. Alcantara GB, Barison A, Santos MDS, Santo LPS, de Toledo JFF, Ferreira AG (2010) Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis. Orbital: The Electronic Journal of Chemistry, 2(1), 41-52. https://doi.org/10.17807/orbital.v2i1.120.
  53. Liu W, Liu C, Chen F, Zheng L (2016) Discrimination of transgenic soybean seeds by terahertz spectroscopy. Scientific Reports, 6, 35799. https://doi.org/10.1038/srep35799.
  54. Xie L, Ying Y, Ying T, Yu H, Fu X (2007) Analytica Chimica Acta, 584(2), 379-384. https://doi.org/10.1016/j.aca.2006.11.071.
  55. James D, Schmidt AM, Wall E, Green M, Masri S (2003) Reliable detection and identification of genetically modified maize, soybean, and canola by multiplex PCR analysis. Jouranl of Agricultural and Food Chemistry, 51(20), 5829-5834. https://doi.org/10.1021/jf0341159.
  56. Luna AS, da Silva AP, Pinho JSA, Ferre J, Boque R (2013) Rapid characterization of transgenic and non-transgenic soybean oils by chemometric methods using NIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 100, 115-119. https://doi.org/10.1016/j.saa.2012.02.085.
  57. Zhu S, Liang J, Yan L (2010) Study on rapid identification methods of transgenic rapeseed oil based on near infrared spectroscopy. International Conference on Computer and Computing Technologies in Agriculture, pp. 633-640, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18336-2_77.
  58. Shiferaw B, Prasanna BM, Hellin J, Bänziger M (2011) Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security, 3(3), 307. https://doi.org/10.1007/s12571-011-0140-5.
  59. Agapito-Tenfen SZ, Vilperte V, Benevenuto RF, Rover CM, Traavik TI, Nodari RO (2014) Effect of stacking insecticidal cry and herbicide tolerance epsps transgenes on transgenic maize proteome. BMC Plant Biology, 14(1), 346. https://doi.org/10.1186/s12870-014-0346-8.
  60. Guo H, Chen J, Pan T, Wang J, Cao G (2014) Vis-NIR wavelength selection for non-destructive discriminant analysis of breed screening of transgenic sugarcane. Analytical Methods, 6(21), 8810-8816. https://doi.org/10.1039/C4AY01833H.
  61. Lu BR, Snow AA (2005) Gene flow from genetically modified rice and its environmental consequences. BioScience, 55(8), 669-678. https://doi.org/10.1641/0006-3568(2005)055[0669:GFFGMR]2.0.CO;2.
  62. Bajai S, Mohanty A (2005) Recent advances in rice biotechnology-Towards genetically superior transgenic rice. Plant Biotechnology Journal, 3(3), 275-307. https://doi.org/10.1111/j.1467-7652.2005.00130.x.
  63. Huang J, Hu R, Rozell S, Pray C (2005) Insect-resistant GM rice in farmer'fields: Assessing productivity and health effects in China. Science, 308(5722), 688-690. https://doi.org/10.1126/science.1108972.
  64. Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K (2002) An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant and Cell Physiology, 43(7), 751-758. https://doi.org/10.1093/pcp/pcf087.
  65. Peng Y, Lu R (2007) Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. Journal of Food Engineering, 82, 142-152. https://doi.org/10.1016/j.jfoodeng.2006.12.027.
  66. Feng YZ, Sun DW (2012) Application of hyperspectral imaging in food safety inspection and control: A review. Critical Reviews in Food Science and Nutrition, 52(11), 1039-1058. https://doi.org/10.1080/10408398.2011.651542.
  67. Gowen, AA, O'Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends in Food Science &Technology, 18(12), 590-598. https://doi.org/10.1016/j.tifs. 2007.06.001.
  68. Kim MS, Lefcourt AM, Chao K, Chen YR, Kim I, Chan DE (2002) Multispectral detection of fecal contamination on apples based on hyperspectral imagery: Part I. Application of visible and near-infrared reflectance imaging. Transactions of the American Society of Agricultural and Biological Engineers, 45(6), 2027-2037. https://doi.org/10.13031/2013.11414.
  69. Dissing BS, Papadopoulou OS, Tassou C, Ersboll BK, Carsensen JM, Panagou EZ, Nychas GJ (2013) Using multispectral imaging for spoilage detection of pork meat. Food and Bioprocess Technology, 6(9), 2268-2279. https://doi.org/10.1007/s11947-012-0886-6.
  70. Lu R (2004) Multispectral imaging for predicting firmness and soluble solids content of apple fruit. Postharvest Biology and Technology, 31(2), 147-157. https://doi.org/10.1016/j.postharvbio.2003.08.006.
  71. Peng Y, Lu R (2006) Improving apple fruit firmness predictions by effective correction of multispectral scattering images. Postharvest Biology and Technology, 41(3), 266-274. https://doi.org/10.1016/j.postharvbio.2006.04.005.
  72. Dissing BS, Nielsen ME, Ersboll BK, Frosch S (2011) Multispectral imaging for determination of astaxanthin concentration in salmonids. PLoS One, 6(5), e19032. https://doi.org/10.1371/journal.pone.0019032.
  73. Lleo L, Barreiro P, Ruiz-Altisent M, Herrero A (2009) Multispectral images of peach related to firmness and maturity at harvest. Journal of Food Engineering, 93(2), 229-235. https://doi.org/10.1016/j.jfoodeng.2009.01.028.
  74. Lokke MM, Seefeldt HF, Skov T, Edelenbos M (2013) Color and textural quality of packaged wild rocket measured by multispectral imaging. Postharvest Biology and Technology, 75, 86-95. https://doi.org/10.1016/j.postharvbio.2012.06.018.
  75. Sun X, Chen KJ, Maddock-Carlin KR, Anderson VL, Lepper AN, Schwartz CA, Keller WL, Ilse BR, Magolski JD et al. (2012) Predicting beef tenderness using color and multispectral image texture features. Meat Science, 92(4), 386-393. https://doi.org/10.1016/j.meatsci.2012.04.030.
  76. Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y (2001) Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology, 91(3), 316-323. https://doi.org/10.1094/PHYTO.2001.91.316.
  77. Qin Z, Zhang M (2005) Dectection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 7(2), 115-128. https://doi.org/10.1016/j.jag. 2005.03.004.
  78. Zhang JH, Wang K, Baiey JS, Wang RC (2006) Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16(1), 108-117. https://doi.org/10.1016/S1002-0160(06)60032-5.
  79. Zhang H, Yao XG, Zhang XB, Zhu LL, Ye ST, Zheng KF, Hu WQ (2008) Measurement of rice leaf chlorophyll and seed nitrogen contents by using multispectral imagine. Chinese Journal of Rice Science, 5, 555-558.
  80. Hao Y, Geng P, Wu W, Wen Q, Rao M (2019) Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics. Molecules, 24(24), 4568. https://doi.org/10.3390/molecules24244568.
  81. García-Molina MD, García-Olmo J, Barro F (2016) Effective identification of low-gliadin wheat lines by near infrared spectroscopy (NIRS): Implications for the development and analysis of foodstuffs suitable for celiac patients. PLoS One, 11(3), e0152292. https://doi.org/10.1371/jouralpone.0152292.