DOI QR코드

DOI QR Code

The Improvement of Point Cloud Data Processing Program For Efficient Earthwork BIM Design

토공 BIM 설계 효율화를 위한 포인트 클라우드 데이터 처리 프로그램 개선에 관한 연구

  • Kim, Heeyeon (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Kim, Jeonghwan (Department of Civil Engineering, Korea National University of Transportation) ;
  • Seo, Jongwon (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Shim, Ho (Department of Civil and Environmental Engineering, Hanyang University)
  • 김희연 (한양대학교 건설환경공학과) ;
  • 김정환 (한국교통대학교 사회기반공학전공) ;
  • 서종원 (한양대학교 건설환경공학과) ;
  • 심호 (한양대학교 건설환경공학과)
  • Received : 2020.06.26
  • Accepted : 2020.08.25
  • Published : 2020.09.30

Abstract

Earthwork automation has emerged as a promising technology in the construction industry, and the application of earthwork automation technology is starting from the acquisition and processing of point cloud data of the site. Point cloud data has more than a million data due to vast extent of the construction site, and the processing time of the original point cloud data is critical because it takes tens or hundreds of hours to generate a Digital Terrain Model (DTM), and enhancement of the processing time can largely impact on the efficiency of the modeling. Currently, a benchmark program (BP) is actively used for the purpose of both point cloud data processing and BIM design as an integrated program in Korea, however, there are some aspects to be modified and refined. This study modified the BP, and developed an updated program by adopting a compile-based development environment, newly designed UI/UX, and OpenGL while maintaining existing PCD processing functions, and expended compatibility of the PCD file formats. We conducted a comparative test in terms of loading speed with different number of point cloud data, and the results showed that 92 to 99% performance increase was found in the developed program. This program can be used as a foundation for the development of a program that reduces the gap between design and construction by integrating PCD and earthwork BIM functions in the future.

토공 자동화는 건설 산업에서 유망한 기술로 주목받고 있으며, 토공 자동화 기술의 적용은 건설 현장의 포인트 클라우드 데이터(Point Cloud Data, PCD) 취득 및 처리로부터 시작된다. PCD는 광범위한 건설 현장의 특성상 백만 개 이상의 많은 데이터를 가지며, 이에 대한 원데이터의 처리 속도는 디지털 지형 모델(Digital Terrain Model, DTM) 생성 및 공사의 효율성 증가에 매우 중요한 요소이다. 현재 국내 설계기준에 적합한 PCD 처리 및 BIM 설계 통합 프로그램인 벤치마크 프로그램(Benchmark Program, BP)이 존재하지만, 사용자의 편의성과 효율성을 위한 수정과 개선이 필요한 상황이다. 본 연구에서는 BP의 기존 PCD 처리 기능을 유지하며, PCD 파일의 호환성에 대한 확장 및 컴파일(Compile) 기반 개발 환경, OpenGL의 활용 및 UI/UX 디자인을 이용한 개선 프로그램을 개발하였다. 개발된 프로그램에 다양한 크기의 PCD를 로드 했을 때, 기존 프로그램과 비교하여 92~99%의 속도 향상이 있었다. 이 프로그램은 추후 PCD와 토공 BIM 기능을 통합하여 설계와 시공 사이의 간극을 줄이는 프로그램 개발의 기반이 될 수 있고, 나아가 토공 생산성 향상에 기여할 것으로 기대된다.

Keywords

References

  1. Autodesk, Civil 3D/Earthwork Engineering Software/Autodesk (2020). (May. 10, 2020).
  2. Bentley, Descartes - Advanced 3D imaginary and point cloud data editing and processing software (2020). (May. 9, 2020).
  3. EDF R&D, Cloud Compare-Open Source project (2020). (May. 10, 2020).
  4. Hugenholtz, C.H., Walker, J., Brown, O., and Myshak, S. (2015). "Earthwork volumetrics with an unmanned aerial vehicle and softcopy photogrammetry." Journal of Surveying Engineering, 141(1), 06014003. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000138
  5. Kim, J., Kim, H., Tanoli, W.A., and Seo, J. (2019). "3D earthwork BIM design and its application in an advanced construction equipment operation." Architecture and Engineering, 4(2), pp.22-26.
  6. Kim, W., Park, S., Lee, R., and Seo, J. (2018). "A Case Study on the Application of Machine Guidance in Construction Field." Journal of the Korean Society of Civil Engineers, KSCE, 38(5), pp.721-731. https://doi.org/10.12652/Ksce.2018.38.5.0721
  7. Korea Institute of Civil Engineering and Building Technology (2018). Technical Demand Study for Automation of Smart Earthwork to Improve Construction Productivity.
  8. Kwon, S., Park, J., Moon, D., Jung, S., and Park, H. (2017). "Smart Merging Method for Hybrid Point Cloud Data using UAV and LIDAR in Earthwork Construction." Procedia Engineering, 196, pp. 21-28. https://doi.org/10.1016/j.proeng.2017.07.168
  9. Leica Geosystems, Leica Cyclone 3D Point Cloud Processing Software (2020). Leica Geosystems, (May. 09, 2020).
  10. Ministry of Land, Infrastructure and Transport (2018). Smart construction technology roadmap for innovation in construction productivity and reinforcement of safety.
  11. Neider, J., and Davis, T. (1997). Opengl Programming Guide: The Official Guide to Learning Opengl, Version 1.1(OTL), 2nd edition, Addison-Wesley.
  12. Park, K., and Hong, I. (2017). "A Study on the Land Administration Support Using the Popular Rotary-Wing Unmanned Aerial Vehicle." Journal of the Association of Korean Geographers, JAKG, 6(1), pp. 93-100. https://doi.org/10.25202/JAKG.6.1.7
  13. Pix4D, (2020). Professional photogrammetry and drone mapping software $\mid$ Pix4D, (May. 10, 2020).
  14. Reina, G., Müller, T., and Ertl, T. (2014). "Incorporating Modern OpenGL into Computer Graphics Education." IEEE Computer Graphics and Applications, 34, pp. 16-21. https://doi.org/10.1109/MCG.2014.69
  15. Siebert, S., and Teizer, J. (2014). "Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system." Automation in Construction, 41, pp. 1-14. https://doi.org/10.1016/j.autcon.2014.01.004
  16. Tanoli, W.A., Raza, H., Lee, S., and Seo, J. (2017). "PAD Based 3D Earthwork BIM Design Module for Machine Guidance." 2017 Proceedings of the 34rd ISARC, Taipei, Taiwan, pp. 626-631.
  17. The Korea Transport Institute. (2017). A Roadmap Study to Support Drone Activation.