DOI QR코드

DOI QR Code

Metformin or α-Lipoic Acid Attenuate Inflammatory Response and NLRP3 Inflammasome in BV-2 Microglial Cells

BV-2 미세아교세포에서 메트포르민 또는 알파-리포산의 염증반응과 NLRP3 인플라마솜 약화에 관한 연구

  • Choi, Hye-Rim (Department of Biomedical Laboratory Science, Konyang University) ;
  • Ha, Ji Sun (Department of Biomedical Laboratory Science, Konyang University) ;
  • Kim, In Sik (Department of Biomedical Laboratory Science, School of Medicine, Eulji University) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University)
  • 최혜림 (건양대학교 임상병리학과) ;
  • 하지선 (건양대학교 임상병리학과) ;
  • 김인식 (을지대학교 임상병리학과) ;
  • 양승주 (건양대학교 임상병리학과)
  • Received : 2020.08.18
  • Accepted : 2020.08.31
  • Published : 2020.09.30

Abstract

Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disease that can be described by the occurrence of dementia due to a decline in cognitive function. The disease is characterized by the formation of extracellular and intracellular amyloid plaques. Amyloid beta (Aβ) is a hallmark of AD, and microglia can be activated in the presence of Aβ. Activated microglia secrete pro-inflammatory cytokines. Furthermore, S100A9 is an important innate immunity pro-inflammatory contributor in inflammation and a potential contributor to AD. This study examined the effects of metformin and α-LA on the inflammatory response and NLRP3 inflammasome activation in Aβ- and S100A9-induced BV-2 microglial cells. Metformin and α-LA attenuated inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, metformin and α-LA inhibited the phosphorylation of JNK, ERK, and p38. They activated the nuclear factor kappa B (NF-κB) pathway and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, metformin and α-LA reduced the marker levels of the M1 phenotype, ICAM1, whereas the M2 phenotype, ARG1, was increased. These findings suggest that metformin and α-LA are therapeutic agents against the Aβ- and S100A9-induced neuroinflammatory responses.

알츠하이머 병은 인지 기능 저하로 인한 치매 발생으로 설명할 수 있는 만성 및 진행성 신경 퇴행성 질환이다. 알츠하이머 병의 특징은 세포 외 및 세포 내 아밀로이드 플라크의 형성이다. 아밀로이드 베타는 알츠하이머 병의 특징이며 미세아교세포는 아밀로이드 베타의 존재하에 활성화될 수 있다. 활성화된 미세아교세포는 전 염증성 사이토카인을 분비한다. 게다가, S100A9는 염증의 중요한 선천성 전 염증 기여자이며 알츠하이머 병에 잠재적인 기여자로 알려져 있다. 이 연구는 아밀로이드 베타 및 S100A9이 처리된 BV-2 세포에서 염증반응 및 NLRP3 인플라마솜 활성화에 대한 메트포르민 및 알파리포산의 효과를 조사했다. 메트포르민과 알파-리포산은 종양 괴사 인자-알파 및 일터루킨-6와 같은 염증성 사이토카인을 약화시킨다. 또한 메트포르민과 알파-리포산은 JNK, ERK, p38의 인산화를 억제하고, NF-kB 경로 및 NLRP3 인플라마솜의 활성화를 억제했다. 또한 메트포르민과 알파-리포산은 M1 표현형인 ICAM1의 수준을 감소시킨 반면 M2 표현형인 ARG1은 증가시켰다. 이러한 발견은 메트포르민과 알파-리포산이 아밀로이드베타 및 S100A9에 의한 신경 염증 반응에 대한 치료제가 될 수 있음을 시사한다.

Keywords

References

  1. Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer's disease neurons. J Alzheimer's Dis. 2017;57:975-999. https://doi.org/10.3233/jad-160612
  2. Solito E, Sastre M. Microglia function in Alzheimer's disease. Front pharmacol. 2012;3:14. https://doi.org/10.3389/fphar.2012.00014
  3. Tang Y, Le W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181-1194. https://doi.org/10.1007/s12035-014-9070-5
  4. Paudel YN, Angelopoulou E, Piperi C, Othman I, Aamir K, Shaikh M. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's Disease (AD): From Risk Factors to Therapeutic Targeting. Cells. 2020;9:383. https://doi.org/10.3390/cells9020383
  5. Cristovao JS, Gomes CM. S100 proteins in Alzheimer's Disease. Front Neurosci. 2019;13:463. https://doi.org/10.3389/fnins.2019.00463
  6. Lee EO, Yang JH, Chang K-A, Suh Y-H, Chong YH. Amyloid-$\beta$ peptide-induced extracellular S100A9 depletion is associated with decrease of antimicrobial peptide activity in human THP-1 monocytes. J Neuroinflammation. 2013;10:1-11. https://doi.org/10.1186/1742-2094-10-68
  7. Wang C, Klechikov AG, Gharibyan AL, Warmlander SK, Jarvet J, Zhao L, et al. The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathol. 2014;127:507-522. https://doi.org/10.1007/s00401-013-1208-4
  8. Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, et al. The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer's disease. Oxid Med Cell Longev. 2015;2015:1-12. https://doi.org/10.1155/2015/352723
  9. Son SM, Shin HJ, Byun J, Kook SY, Moon M, Chang YJ, et al. Metformin facilitates amyloid-$\beta$ generation by $\beta$-and $\gamma$-secretases via autophagy activation. J Alzheimer's Dis. 2016;51:1197-1208. https://doi.org/10.3233/jad-151200
  10. Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, et al. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer's disease. Adv Drug Delivery Rev. 2008;60:1463-1470. https://doi.org/10.1016/j.addr.2008.04.015
  11. Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148-159. https://doi.org/10.1038/cmi.2015.95
  12. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20:3328. https://doi.org/10.3390/ijms20133328
  13. Kim IS, Lee JS. S100A8 and S100A9 secreted by allergens in monocytes inhibit spontaneous apoptosis of normal and asthmatic neutrophils via the Lyn/akt/ERK pathway. Korean J Clin Lab Sci. 2017;49:128-134. https://doi.org/10.15324/kjcls.2017.49.2.128
  14. Ha JS, Yeom YS, Jang JH, Kim YH, Im JI, Kim IS, et al. Anti-inflammatory effects of metformin on neuro-inflammation and NLRP3 Inflammasome activation in BV-2 microglial cells. Biomedical Science Letters. 2019;25:92-98. https://doi.org/10.15616/bsl.2019.25.1.92
  15. Kim SM, Ha JS, Han AR, Cho S-W, Yang S-J. Effects of $\alpha$-lipoic acid on LPS-induced neuroinflammation and NLRP3 inflammasome activation through the regulation of BV-2 microglial cells activation. BMB reports. 2019;52:613. https://doi.org/10.5483/bmbrep.2019.52.10.026
  16. Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Annals of translational medicine. 2015;3:136. http://doi.org/10.3978/j.issn.2305-5839.2015.03.49
  17. Browne TC, McQuillan K, McManus RM, O'Reilly J-A, Mills KH, Lynch MA. IFN-$\gamma$ Production by Amyloid $\beta$-Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer's Disease. J Immunol. 2013;190: 2241-2251. https://doi.org/10.4049/jimmunol.1200947
  18. Zhan X, Stamova B, Sharp FR. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer's disease brain: a review. Front Aging Neurosci. 2018;10:42. https://doi.org/10.3389/fnagi.2018.00042
  19. Zhang C, Liu Y, Gilthorpe J, Van der Maarel JR. MRP14 (S100A9) protein interacts with Alzheimer beta-amyloid peptide and induces its fibrillization. PLoS One. 2012;7:e32953. https://doi. org/10.1371/journal.pone.0032953
  20. Simard JC, Cesaro A, Chapeton-Montes J, Tardif M, Antoine F, Girard D, et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-${\kappa}B$ 1. PloS One. 2013;8:e72138. https://doi.org/10.1371/journal.pone.0072138
  21. Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol. 2018;9:1298. https://doi.org/10.3389/fimmu.2018.01298
  22. Rotermund C, Machetanz G, Fitzgerald JC. The therapeutic potential of metformin in neurodegenerative diseases. Frontiers in endocrinology. 2018;9:400. https://doi.org/10.3389/fendo.2018.00400
  23. Seifar F, Khalili M, Khaledyan H, Amiri Moghadam S, Izadi A, Azimi A, et al. $\alpha$-Lipoic acid, functional fatty acid, as a novel therapeutic alternative for central nervous system diseases: A review. Nutr Neurosci. 2019;22:306-316. https://doi.org/10.1080/1028415x.2017.1386755
  24. Uddin M, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, et al. Autophagy and Alzheimer's disease: from molecular mechanisms to therapeutic implications. Front Aging Neurosci. 2018;10:4. https://doi.org/10.3389/fnagi.2018.00004
  25. Wojsiat J, Zoltowska KM, Laskowska-Kaszub K, Wojda U. Oxidant/antioxidant imbalance in Alzheimer's disease: therapeutic and diagnostic prospects. Oxid Med Cell Longev. 2018;2018:1-16. https://doi.org/10.1155/2018/6435861
  26. Tonnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J Alzheimer Dis. 2017;57:1105-1121. https://doi.org/10.3233/jad-161088
  27. Cho MH, Cho K, Kang HJ, Jeon EY, Kim HS, Kwon HJ, et al. Autophagy in microglia degrades extracellular $\beta$-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy. 2014;10:1761-1775. https://doi.org/10.4161/auto.29647
  28. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012-1021. https://doi.org/10.1016/j.tibs.2016.09.002
  29. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. British J Pharmacol. 2016;173:649-665. https://doi.org/10.1111/bph.13139
  30. Cui W, Sun C, Ma Y, Wang S, Wang X, Zhang Y. Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease. Front Neurosci. 2020;14. https://doi.org/10.3389/fnins.2020.00444

Cited by

  1. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease vol.159, pp.5, 2021, https://doi.org/10.1111/jnc.15519