DOI QR코드

DOI QR Code

Cathepsin B Is Implicated in Triglyceride (TG)-Induced Cell Death of Macrophage

중성지방에 의한 대식세포 사멸 과정에서 Cathepsin B의 영향

  • Jung, Byung Chul (Department of Nutritional Sciences and Toxicology, University of California) ;
  • Lim, Jaewon (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Sung Hoon (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Yoon Suk (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University)
  • 정병출 (캘리포니아대학교 버클리캠퍼스 영양과학 및 독성학과) ;
  • 임재원 (연세대학교 보건과학대학 임상병리학과) ;
  • 김성훈 (연세대학교 보건과학대학 임상병리학과) ;
  • 김윤석 (연세대학교 보건과학대학 임상병리학과)
  • Received : 2020.08.24
  • Accepted : 2020.08.28
  • Published : 2020.09.30

Abstract

Macrophage cell death contributes to the formation of plaque, leading to the development of atherosclerosis. The accumulation of triglyceride (TG) is also associated with the pathogenesis of atherosclerosis. A previous study reported that TG induces the cell death of macrophages. This study examined whether the cytoplasmic release of cathepsin B from lysosome is associated with the TG-induced cell death of macrophage. The release of cathepsin B was increased in the TG-treated THP-1 macrophages, but the TG treatment did not affect cathepsin B expression. Furthermore, the inhibition of cathepsin B by its inhibitor, CA-074 Me, partially inhibited the TG-induced cell death of macrophage. TG-triggered macrophage cell death is mediated by the activation of caspase-1, -2, and apoptotic caspases. Therefore, this study investigated whether cathepsin B is implicated in the activation of these caspases. The inhibition of cathepsin B blocked the activation of caspase-7, -8, and -1 but did not affect the activity of caspase-3, -9, and -2. Overall, these results suggest that TG-induced cytoplasmic cathepsin B causes THP-1 macrophage cell death by activating caspase-1, leading to subsequent activation of the extrinsic apoptotic pathway.

대식세포사멸은 죽상판 형성에 영향을 미쳐 죽상동맥경화증 발병에 관여하는 것으로 알려져 있다. 중성지방 역시 죽상동맥경화 발병에 기여한다고 알려져 있는데 최근 본 연구팀에서는 중성지방이 대식세포사멸을 유발한다는 결과를 확인하였다. 본 연구에서는 cathepsin B가 중성지방에 의해 유발되는 대식세포사멸 과정에 관여하는지 확인하고자 연구를 진행하였다. THP-1 대식세포에 중성지방 처리 시 cathepsin B의 발현량에는 변화가 없고 리소좀에 있던 cathepsin B가 세포질로 방출되어 세포질의 cathepsin B가 증가한 것을 확인하였다. 다음으로 cathepsin B 억제제인 CA-074 Me를 처리 시 중성지방에 의해 유도되는 대식세포사멸이 일부 회복되는 것을 확인하였다. 본 연구팀의 이전 연구에서 중성지방에 의한 대식세포사멸이 caspase-1, -2 및 apoptotic caspase 활성화를 매개로 일어남을 확인하였기 때문에 본 연구에서는 이러한 caspase 활성 경로와 cathepsin B와의 연관성에 대해 연구하였다. cathepsin B 억제시 caspase-7, -8 및 -1의 활성은 억제되었으나, caspase-3, -9 및 -2는 활성에는 영향을 미치지 않음을 알 수 있었다. 정리하면, 중성지방에 의해 세포질로 방출된 cathepsin B는 caspase-1 활성화에 기여하고, 활성화된 caspase-1은 외인성 apoptotic caspase 경로를 활성화하여 THP-1 대식세포 사멸을 유발한다는 것을 알 수 있다.

Keywords

References

  1. Ndrepepa G. Atherosclerosis and ischaemic heart disease: Here to stay or gone tomorrow. Indian J Med Res. 2017;146:293-297. https://doi.org/10.4103/ijmr.IJMR_1668_17
  2. Kim H, Kim S, Han S, Rane PP, Fox KM, Qian Y, et al. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in korea: A nationwide population-based study. BMC Public Health. 2019;19:1112. http://doi.org/10.1186/s12889-019-7439-0
  3. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 2013;13:709-721. https://doi.org/10.1186/s12889-019-7439-0
  4. Rader DJ, Pure E. Lipoproteins, macrophage function, and atherosclerosis: Beyond the foam cell? Cell Metab. 2005;1:223-230. https://doi.org/10.1016/j.cmet.2005.03.005
  5. Tabas I. Apoptosis and plaque destabilization in atherosclerosis: The role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 2004;(11 Suppl 1):12-16. https://doi.org/10.1038/sj.cdd.4401444
  6. Son SJ, Rhee KJ, Lim J, Kim TU, Kim TJ, Kim YS. Triglyceride-induced macrophage cell death is triggered by caspase-1. Biol Pharm Bull. 2013;36:108-113. https://doi.org/10.1248/bpb.b12-00571
  7. Lim J, Kim HK, Kim SH, Rhee KJ, Kim YS. Caspase-2 mediates triglyceride (TG)-induced macrophage cell death. BMB Rep. 2017;50:510-515. https://doi.org/10.5483/bmbrep.2017.50.10.106
  8. Perisic Nanut M, Sabotic J, Jewett A, Kos J. Cysteine cathepsins as regulators of the cytotoxicity of NK and T cells. Front Immunol. 2014;5:616. https://doi.org/10.3389/fimmu.2014.00616
  9. Liu CL, Guo J, Zhang X, Sukhova GK, Libby P, Shi GP. Cysteine protease cathepsins in cardiovascular disease: From basic research to clinical trials. Nat Rev Cardiol. 2018;15:351-370. https://doi.org/10.1038/s41569-018-0002-3
  10. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC, et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation. 2002;105:2766-2771. https://doi.org/10.1161/01.cir.0000017860.20619.23
  11. Zhao CF, Herrington DM. The function of cathepsins B, D, and X in atherosclerosis. Am J Cardiovasc Dis. 2016;6:163-170.
  12. Chevriaux A, Pilot T, Derangere V, Simonin H, Martine P, Chalmin F, et al. Cathepsin B is required for NLRP3 inflammasome activation in macrophages, through NLRP3 interaction. Front Cell Dev Biol. 2020;8:167. https://doi.org/10.3389/fcell.2020.00167
  13. Aronis A, Madar Z, Tirosh O. Lipotoxic effects of triacylglycerols in j774.2 macrophages. Nutrition. 2008;24:167-176. https://doi.org/10.1016/j.nut.2007.10.017
  14. Tsuchiya S, Kobayash Y, Goto Y, Okumura H, Nakae S, Konno T, et al. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982;42:1530-1536.
  15. Auwerx J. The human leukemia cell line, THP-1: A multifacetted model for the study of monocyte-macrophage differentiation. Experentia. 1991;47:22-31. https://do.org/10.1007/BF02041244
  16. Dimauro I, Pearson T, Caporossi D, Jackson MJ. A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue. BMC Res Notes. 2012;5:513. https://doi.org/10.1186/1756-0500-5-513
  17. Jo HS, Kim DS, Ahn EH, Kim DW, Shin MJ, Cho SB, et al. Protective effects of TAT-NQO1 against oxidative stress-induced HT-22 cell damage, and ischemic injury in animals. BMB Rep. 2016;49:617-622. https://doi.org/10.5483/BMBRep.2016.49.11.117
  18. Joo D, Woo JS, Cho KH, Han SH, Min TS, Yang DC, et al. Biphasic activation of extracellular signal-regulated kinase (ERK) 1/2 in epidermal growth factor (EGF)-stimulated SW480 colorectal cancer cells. BMB Rep. 2016;49:220-225. https://doi.org/10.5483/bmbrep.2016.49.11.117
  19. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene. 2004;23:2881-2890. https://doi.org/10.1038/sj.onc.1207512
  20. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F, et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the NLRP3 inflammasome and promotes tumor growth. Nat Med. 2013;19: 57-64. https://doi.org/10.1038/nm.2999
  21. Han SH, Nicholls SJ, Sakuma I, Zhao D, Koh KK. Hypertriglyceridemia and cardiovascular diseases: Revisited. Korean Circ J. 2016;46:135-144. https://doi.org/10.4070/kcj.2016.46.2.135
  22. Wuopio J, Hilden J, Bring C, Kastrup J, Sajadieh A, Jensen GB, et al. Cathepsin B and s as markers for cardiovascular risk and all-cause mortality in patients with stable coronary heart disease during 10 years: A claricor trial sub-study. Atherosclerosis. 2018;278:97-102. https://doi.org/10.1016/j.atherosclerosis.2018.09.006
  23. Tabas I. Macrophage apoptosis in atherosclerosis: Consequences on plaque progression and the role of endoplasmic reticulum stress. Antioxid Redox Signal. 2009;11:2333-2339. https://doi.org/10.1089/ars.2009.2469
  24. Premzl A, Turk V, Kos J. Intracellular proteolytic activity of cathepsin B is associated with capillary-like tube formation by endothelial cells in vitro. J Cell Biochem. 2006;97:1230-1240. https://doi.org/10.1002/jcb.20720
  25. Li W, Yuan XM. Increased expression and translocation of lysosomal cathepsins contribute to macrophage apoptosis in atherogenesis. Ann N Y Acad Sci. 2004;1030:427-433. https://doi.org/10.1196/annals.1329.053
  26. Hentze H, Lin XY, Choi MS, Porter AG. Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 2003;10:956-968. https://doi.org/10.1038/sj.cdd.4401264
  27. Lim J, Kim YS, Kim SH, Cho Y, Lee MH, Jung BC. et al. Triglyceride enhances susceptibility to TNF-$\alpha$-induced cell death in THP-1 cells. Genes & Genomics. 2013;36:87-93. https://doi.org/10.1007/s13258-013-0144-y
  28. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001;153:999-1010. https://doi.org/10.1083/jcb.153.5.999