DOI QR코드

DOI QR Code

Effective Identification of Ochrobactrum anthropi Isolated from Clinical Specimens

임상검체에서 분리된 Ochrobactrum anthropi의 효과적인 동정

  • Ko, Hyun-Mi (Dental Science Research Institute, Department of Oral Anatomy, School of Dentistry, Chonnam National University) ;
  • Jo, Jun-Hyeon (Department of Laboratory Medicine, Kwangju Christian Hospital) ;
  • Baek, Hae-Gyeong (Department of Laboratory Medicine, Kwangju Christian Hospital)
  • 고현미 (전남대학교 치과대학 치의학연구소 구강해부학교실) ;
  • 조준현 (광주기독병원 진단검사의학과) ;
  • 백해경 (광주기독병원 진단검사의학과)
  • Received : 2020.07.29
  • Accepted : 2020.09.03
  • Published : 2020.09.30

Abstract

Ochrobactrum anthropi is a non-fermentative oxidative gram-negative bacillus that produces oxidase. Distinguishing a mixed culture with non-fermenting bacteria having a similar appearance and oxidase-positive is difficult, and there is a limit to accurate identification with a biochemical identification system. This paper proposes that the Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Platform (MALDI-TOF) method is useful for classifying bacteria that are difficult to identify using biochemical testing methods. As a result of analyzing five cases of O. anthropi examined using MicroScan, it took 6.5 days to the final report, which was 3.5 days more than the 3.0 days of E. coli. The pus sample in patient 5 was a mixed infection with Achromobacter xylosoxidans, and it took 11.3 days because of multiple subculture and retests. Four patients were over 60 years old with an underlying disease, and the possibility of opportunistic and nosocomial infections could not be excluded. Among them, samples collected after 92 days of hospitalization were resistant to imipenem and meropenem. Therefore, an examination using the MALDI-TOF method will be useful for the rapid and adequate treatment of patients with difficult identification, such as O. anthropi.

Ochrobactrum anthropi는 oxidase를 생산하는 비발효산소성 그람음성 막대균으로 외관이 비슷하고 oxidase가 양성인 비발효 세균과 혼합배양 시 구분이 힘들고 생화학적 동정 장비로는 정확한 동정에 한계가 있다. 따라서 본 연구에서는 생화학적 검사 방법으로 동정이 힘든 세균동정의 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Platform (MALDI-TOF) 법의 유용성을 제시하고자 하였다. MicroScan을 이용해 검사했던 O. anthropi 5례를 분석한 결과, 최종보고까지 6.2일이 소요되었으며 E. coli의 3.0일에 비해 3.5일이 더 소요되었다. 5번 환자 고름 검체는 Achromobater xylosoxidans와 혼합감염으로 여러 번의 계대 배양과 재검사로 인해 11.3일이 소요되었는데, MALDI-TOF법으로 검사한 경우 한 번에 동정되었다. 4명의 환자는 기저질환이 있는 60세 이상이었고 기회감염과 원내감염의 가능성을 배제할 수 없었으며, 그 중 92일 만에 채취된 검체는 imipenem과 meropenem에 내성이었다. 따라서 O. anthropi처럼 동정이 까다로운 세균은 신속하고 적절한 환자 치료를 위해 MALDI-TOF법을 이용한 검사가 매우 유용할 것으로 사료된다.

Keywords

References

  1. Cieslak TJ, Robb ML, Drabick CJ, Fischer GW. Catheter-associated sepsis caused by Ochrobactrum anthropi: report of a case and review of related nonfermentative bacteria. Clin Infect Dis. 1992;14:902-907. https://doi.org/10.1093/clinids/14.4.902
  2. Kim GM, Jin SJ, Yoo JS, Kim CO, Choi JY, Kim JM, et al. A case of meropenem-resistant Ochrobactrum anthropi bacteremia. Infect Chemother. 2009;41:62-64. https://doi.org/10.3947/ic.2009.41.1.62
  3. Nasir N, Mahmood SF. Mortality in patients with respiratory and non respiratory carbapenem resistant-multidrug resistant Acinetobacter infections. J Ayub Med Coll Abbottabad. 2017;29:511-513.
  4. Appelbaum PC, Campbell DB. Pancreatic abscess associated with Achromobacter group Vd biovar1. J Clin Microbiol. 1980;12:282-283. https://doi.org/10.1128/JCM.12.2.282-283.1980
  5. Jimenez G. Antony S. Ochrobactrum anthropi - an unusual cause of line related sepsis. current knowledge of the epidemiology and clinical features of this pathogen. Br J Med Med Res. 2016;18:1-7. https://doi.org/10.9734/BJMMR/2016/29365
  6. Aguilera-Arreola MG, Ostria-Hernandez ML, Albarran-Fernandez E, Juarez-Enriquez SR, Majalca-Martinez C, Rico-Verdin B, et al. Correct identification of Ochrobactrum anthropi from blood culture using 16rRNA sequencing: a first case report in an immunocompromised patient in Mexico. Front Med(Lausanne). 2018;5:205. https://doi.org/10.3389/fmed.2018.00205
  7. Mastroiani A, Cancellieri C, Montini G. Ochrobactrum anthropi bacteremia: case report and review of the literature. Clin Microbiol Infect. 1999;5:570-573. https://doi.org/10.1111/j.1469-0691.1999.tb00437.x
  8. Gransden WR, Eykyn SJ. Seven cases of bacteremia due to Ochrobactrum anthropi. Clin Infect Dis. 1992;15:1068-1069. https://doi.org/10.1093/clind/15.6.1068
  9. Babic I, Fischer-Le Saux M, Giraud E, Boemare N. Occurrence of natural dixenic association between the symbiont Photorhabdus luminescens and bacteria related to Ochrobactrum spp. in tropical entomopathogenic Heterorhabditis spp. (Nematoda, Rhabditida). Microbiology. 2000;146:709-718. https://doi.org/10.1099/00221287-146-3-709
  10. Shilton CM, Brown GP, Benedict S, Shine R. Spinal arthropathy associated with Ochrobactrum anthropi in free-ranging cane toads (Chaunus [Bufo] marinus) in Australia. Vet Pathol. 2008;45:85-94. https://doi.org/10.1354/vp.45-1-85
  11. SitiRohani AH, TzarMN. Ochrobactrum anthropi catheter-related bloodstream infection: the first case report in Malaysia. Med J Malaysia. 2013;68:267-268.
  12. Menezes FG, Abreu MG, Kawagoe JY, Warth AN, Deutsch AD, Dornaus MF, et al. Ochrobactrum anthropi bacteremia in a preterm infant with cystic fibrosis. Braz J Microbiol. 2014;45:559-561. https://doi.org/10.1590/S1517-83822014005000043
  13. Mrozek S, Dupuy M, Hoarau L, Lourtet J, Martin-Blondel G, Geeraerts T. Brain empyema due to Ochrobactrum anthropi. Med Mal Infect. 2014;44:128-129. https://doi.org/10.1016/j.medmal.2014.01.003
  14. Stager CE, Davis JR. Automated systems for identification of microorganisms. Clin Microbiol Rev. 1992;5:302-327. https://doi.org/10.1128/cmr.5.3.302
  15. Funke G, Monnet D, deBernardis C, von Graevenitz A, Freney J. Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol. 1998;36: 1948-1952. https://doi.org/10.1128/JCM.36.7.1948-1952.1998
  16. Garcia-Garrote F, Cercenado E, Bouza E. Evaluation of a newsystem, VITEK 2, for identification and antimicrobial susceptibility testing of Enterococci. J Clin Microbiol. 2000;38:2108-2111. https://doi.org/10.1128/JCM.38.6.2108-2111.2000
  17. Velasco J, Romero C, Lopez-Goni I, Leiva J, Diaz R, Moriyon I. Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp. Int J Syst Bacteriol. 1998;48:759-768. https://doi.org/10.1099/00207713-48-3-759
  18. Gupta A, Chauhan K, Pandey A. Neonatal Septicaemia by Ochrobactrum anthropi: A missed pathogen. Int J Curr Microbiol App Sci. 2018;7:1651-1654. https://doi.org/10.20546/ijcmas.2018.705.195
  19. Berman AJ, Del Priore LV, Fischer CK. Endogenous Ochrobactrum anthropi endophthalmitis. Am J Ophthalmol. 1997;123: 560-562. https://doi.org/10.1016/s0002-9394(14)70190-4
  20. Haditsch M, Binder L, Tschurtschenthaler G, Watschinger R, Zauner G, Mittermayer H. Bacteremia caused by Ochrobactrum anthropi in an immunocompromised child. Infection. 1994;22:291-292. https://doi.org/10.1007/BF01739922
  21. Murray PR. What is new in clinical microbiology-microbial identification by MALDI-TOF mass spectrometry: a paper from the 2011 William Beaumont Hospital Symposium on molecular pathology. J Mol Diagn. 2012;14:419-423. https://doi.org/10.1016/j.jmoldx.2012.03.007
  22. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis. 2009;49:543-551. https://doi.org/10.1086/600885
  23. Kim TS, Lee K, Hong YJ, Hwang SM, Park JS, Park KU, et al. MALDI-TOF MS: Its application in the clinical laboratory and a paradigm shift in clinical microbiology. Lab Med Online. 2015;5:176-187. http://doi.org/10.3343/lmo.2015.5.4.176
  24. Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis. 2014;6:534-538. http://doi.org/10.3978/j.issn.2072-1439.2014.02.18
  25. Choi JU, Yu YB, Kim SH, Won S, Kim YK. Two years quaternary isolation of Gram-positive bacilli using MALDI-TOF MS in positive blood culture of a university hospital. Korean J Clin Lab Sci. 2018;50:414-421. https://doi.org/10.15324/kjcls.2018.50.4.414
  26. Kim M, Kwon MJ, Chung HS, Lee Y, Yong D, Jeong SH, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of aerobic bacteria in a clinical microbiology laboratory. Korean J Clin Microbiol. 2012;15:60-66. https://doi.org/10.5145/KJCM.2012.15.2.60
  27. Camoez M, Sierra JM, Dominguez MA, Ferrer-Navarro M, Vila J, Roca I. Automated categorization of methicillin-resistant Staphylococcus aureus clinical isolates into different clonal complexes by MALDI-TOF mass spectrometry. Clinl Microbiol Infect. 2016;22:161.e1-161.e7. https://doi.org/10.1016/j.cmi.2015.10.009
  28. Rapp E, Samuelsen o, Sundqvist M. Detection of carbapenemases with a newly developed commercial assay using matrix assisted laser desorption ionization-time of flight. J Micorobiol Methods. 2018;146:37-39. https://doi.org/10.1016/j.mimet.2018.01.008
  29. Kim YA, Yong D, In YH, Park HS, Lee K. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to screen the extended-spectrum $\beta$-lactamase-producing ST131 Escherichia coli strains. Ann Clin Microbiol. 2016;19:65-69. https://doi.org/10.5145/ACM.2016.19.3.65

Cited by

  1. The Genus Ochrobactrum as Major Opportunistic Pathogens vol.8, pp.11, 2020, https://doi.org/10.3390/microorganisms8111797