DOI QR코드

DOI QR Code

초음파를 활용한 식품 살균 기술의 연구 현황

Current status of research on microbial disinfection of food using ultrasound

  • 투고 : 2020.08.12
  • 심사 : 2020.08.31
  • 발행 : 2020.09.30

초록

식품의 보존성 및 안전성 증대를 위해 살균이 필수적이다. 일반적으로 가열 살균 기술이 가장 많이 사용되고 있으나, 공정 중 식품의 품질 저하를 막기 위한 살균 기술로 신공정 기술을 활용한 비가열 살균 기술의 중요성이 대두되고 있다. 그 중에서도 초음파 기술은 특유의 캐비테이션 현상으로 미생물의 파괴가 촉진되어 살균 효과를 내는 것으로 알려져 있다. 초음파 기술 단독으로는 사멸 효과가 낮으며, 다양한 공정기술과 함께 적용하여 사멸 효과를 극대화할 수 있는 기술 개발을 위한 연구가 활발히 진행되고 있다. 초음파와 함께 처리할 수 있는 공정으로는 가열, 고압, 화학적 처리 등 전통적인 살균 방법 뿐 아니라 자외선 조사, PEF 등 신공정 기술이 있다. 초음파 기술을 적용한 다른 공정과 달리 살균 기술은 아직 실험실 수준에 머물러 있어 산업적 적용을 위한 장치의 개발, 최적 공정 확립 등 추가 연구가 필요하다.

Microbial disinfection is essential to increase the preservation and safety of food. In general, thermal sterilization technology is most frequently used, but it often causes nutrient denaturation, and deterioration of food quality. Accordingly, non-thermal sterilization using a novel technology is emerging as an alternative technology. Among them, ultrasonic technology produces a disinfection effect by promoting the destruction of microorganisms by cavitation. Ultrasound technology alone has a low effect, so research is being actively conducted to develop an effective technology by applying as a hurdle technology with various other technologies. Ultrasound can be treated with various processes including traditional sterilization methods such as heating, high pressure, and chemical treatment, as well as novel technologies such as ultraviolet irradiation. Ultrasound assisted sterilization technology still remains at the laboratory level, requiring additional research such as the development of equipment for industrial application and establishment of an optimal process.

키워드

참고문헌

  1. Bermudez-Aguirre D. Advances in Thermo-and Manothermosonication for Microbial Inactivation. pp. 15-37. In Ultrasound: Advances for Food Processing and Preservation. Bermudez-Aguirre D (ed). Academic Press. (2017)
  2. Char CD, Mitilinaki E, Guerrero SN, Alzamora SM. Use of High-Intensity Ultrasound and UV-C Light to Inactivate Some Microorganisms in Fruit Juices. Food Bioprocess. Technol. 3: 797-803 (2010) https://doi.org/10.1007/s11947-009-0307-7
  3. Chemat F, Huma Z, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonics Sonochem. 18: 813-835 (2011) https://doi.org/10.1016/j.ultsonch.2010.11.023
  4. Earnshaw RG, Appleyard J, Hurst RM. Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. Int. J. Appl. Microbiol. 28: 197-219 (1995) https://doi.org/10.1016/0168-1605(95)00057-7
  5. Evelyn, Silva FVM. Inactivation of Byssoclamys nivea ascospores in stawberry puree by high pressure, power ultrasound and thermal processing. Int. J. Food Microbiol. 214: 129-136 (2015) https://doi.org/10.1016/j.ijfoodmicro.2015.07.031
  6. Evelyn, Silva FVM. High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 62: 365-372 (2016) https://doi.org/10.1016/j.foodcont.2015.11.007
  7. Gomez-Lopez VM, Ragaert P, Debevere J, Devlieghere F. Pulsed light for food decontamination: a review. Trends in Food Sci. Technol. 18: 464-473 (2007) https://doi.org/10.1016/j.tifs.2007.03.010
  8. Huang E, Mittal GS, Griffiths MW. Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biosystems Engineering 94: 403-413 (2006) https://doi.org/10.1016/j.biosystemseng.2006.03.008
  9. Lee DU, Heinz V, Knorr D. Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg. Innov. Food Sci. Emerg. Tech. 4: 387-393 (2003) https://doi.org/10.1016/S1466-8564(03)00039-0
  10. Lee H, Zhou B, Liang W, Feng H, Martin, SE Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. J. Food Engin. 93: 354-364 (2009) https://doi.org/10.1016/j.jfoodeng.2009.01.037
  11. Lee NH. Emerging Technology - Application of Ultrasonic Technology for Protein Extraction. Bull. Food tech. 24: 369-376 (2011)
  12. Lopez-Malo A, Guerrero S, Santiesteban A, Alzamora SM. Inactivation kinetics of Saccharomyces cerevisiae and Listeria monocytogenes in apple juice processed by novel technologies. In Proceedings of 2nd Mercosur Congress on Chemical Engineering. 4th Mercosur Congress on Process Systems Engineering. No. 0681 (2005)
  13. Munoz A, Palgan I, Noci F, Cronin DA, Morgan DJ, Whyte P, Lyng JG. Combinations of selected non-thermal technologies and antimicrobials for microbial inactivation in a buffer system. Food Res. Int. 47: 100-105 (2012) https://doi.org/10.1016/j.foodres.2012.02.001
  14. Pagan R, Manas P, Raso J, Condon S. Bacterial resistance to ultrasonic waves under pressure at nonlethal (manosonication) and lethal (manothermosonication) temperatures. Appl. Environ. Microbiol. 65: 297-300 (1999) https://doi.org/10.1128/AEM.65.1.297-300.1999
  15. Park J, Na S, Lee Y. Present and future of non-thermal food processing technology. Food Sci. Ind. 43: 2-20 (2010)
  16. Piyasena P, Mohareb E, McKellar RC. Inactivation of microbes using ultrasound: a review. Int. J. Food Microbiol. 87: 207-216 (2003) https://doi.org/10.1016/S0168-1605(03)00075-8
  17. Raso JR, Condon S, Sala FJ. Influence of temperature and pressure on the lethality of ultrasound. Appl. Environ. Microbiol. 64: 465-471 (1998a) https://doi.org/10.1128/AEM.64.2.465-471.1998
  18. Raso J, Palop A, Pagan R, Condon S. Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J. Appl. Microbiol. 85: 849-854 (1998b) https://doi.org/10.1046/j.1365-2672.1998.00593.x
  19. Salleh-Mack SZ, Roberts JS. Ultrasound pasteurization. The effects of temperature, soluble solids, organic acids, and pH on the inactivation of Escherichia coli ATCC 25922. Ultrasonics Sonochem. 14: 323-329 (2007) https://doi.org/10.1016/j.ultsonch.2006.07.004
  20. Sandra NG, Mariana F, Marcela S, Mercedes GC. Hurdle technology using ultrasound for food preservation. pp. 39-99. In Ultrasound: Advances for Food Processing and Preservation. Bermudez-Aguirre D (ed). Academic Press. (2017)
  21. Song KM, Jung SK, Kim YH, Kim YE, Lee NH. Development of industrial ultrasound system for mass production of collagen and biochemical characteristics of extracted collagen. Food Bioproduct. Process. 110: 96-103 (2018) https://doi.org/10.1016/j.fbp.2018.04.001
  22. Tremarin A, Brandao TR, Silva CL. Application of ultraviolet radiation and ultrasound treatments for Alicyclobacillus acidoterrestris spores inactivation in apple juice. LWT. 78: 138-142 (2017) https://doi.org/10.1016/j.lwt.2016.12.039
  23. Tsukamoto I, Yim B, Stavarache CE, Furuta M, Hashiba K, Maeda Y. Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrasonics Sonochem. 11: 61-65 (2004) https://doi.org/10.1016/S1350-4177(03)00135-4
  24. Ugarte-Romero E, Feng H, Martin SE. Inactivation of Shigella boydii 18 IDPH and L. monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures. J. Food Sci. 72: M103-M107 (2007) https://doi.org/10.1111/j.1750-3841.2007.00340.x
  25. Vyas S, Ting YP. A review of the application of ultrasound in bioleaching and insights from sonication in (bio) chemical processes. Resources. 7: 3 (2018) https://doi.org/10.3390/resources7010003
  26. Walkling-Ribeiro M, Noci F, Cronin DA, Lyng JG, Morgan DJ. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioproduct. Process. 87: 102-107 (2009) https://doi.org/10.1016/j.fbp.2008.08.001