DOI QR코드

DOI QR Code

A FIXED POINT APPROACH TO THE STABILITY OF THE ADDITIVE-CUBIC FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook (Department of Mathematics Education, Gongju National University of Education) ;
  • Lee, Yang-Hi (Department of Mathematics Education, Gongju National University of Education)
  • Received : 2019.10.02
  • Accepted : 2020.04.21
  • Published : 2020.09.25

Abstract

In this paper, we investigate the stability of the additive-cubic functional equations f(x+ky)+f(x-ky)-k2 f(x+y)-k2 f(x-y)+(k2-1)f(x) - (k2-1)f(-x) = 0, f(x+ky)-f(ky-x)-k2 f(x+y)+k2 f(y-x)+2(k2-1)f(x)= 0, f(kx+y)+f(kx-y)-kf(x+y)-kf(x-y)-2f(kx)+2kf(x)= 0 by using the fixed point theory in the sense of L. Cădariu and V. Radu.

Keywords

References

  1. M. Arunkumar, P. Agilan, and S. Ramamoorthi, Perturbation of AC-mixed type functional equation, In Proceedings of National conference on Recent Trends in Mathematics and Computing (NCRTMC-2013) 7-14.
  2. M. Arunkumar, C. Devi, S. Mary, Perturbation of Ac-Mixed Type Functional Equation: A Fixed Point Approach, International Journal of Computing Algoritheorem 3 (2014), 1060-1066.
  3. L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
  4. L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitaet, Graz, Graz, Austria 346 (2004), 43-52.
  5. J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
  6. A. Ebadian and S. Zolfaghari, Stability of a mixed additive and cubic functional equation in several variables in non-Archimedean spaces, S. Ann. Univ. Ferrara 58(2) (2012), 291-306. https://doi.org/10.1007/s11565-012-0152-x
  7. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
  8. Additive-cubic functional equations from additive groups into non-Archimedean Banach spaces, Filomat 27(5) (2013), 731-738. https://doi.org/10.2298/FIL1305731E
  9. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
  10. K.-W.Jun and H.-M. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, Bull. Belg. Math. Soc. 13(2) (2006), 271-285. https://doi.org/10.36045/bbms/1148059462
  11. S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic functional equation, Korean J. Math. 27 (2019), 343-355. https://doi.org/10.11568/KJM.2019.27.2.343
  12. S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the quadratic and quartic type functional equation, J. Chungcheong Math. Soc. 32 (2019), 337-347. https://doi.org/10.14403/jcms.2019.32.3.337
  13. S.-S. Jin and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of an additive-cubic functional equation, Int. J. Math. Anal. (Ruse) 13(2) (2019), 213-221. https://doi.org/10.12988/ijma.2019.9320
  14. Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic-quartic functional equation, East Asian Math. J. 35 (2019), 559-568. https://doi.org/10.7858/EAMJ.2019.044
  15. A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 342 (2008), 1318-1331. https://doi.org/10.1016/j.jmaa.2007.12.039
  16. J. M. Rassias, K.Ravi, M. Arunkumar and B. V. S. Kumar, Solution and Ulam stability of mixed type cubic and additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149-175.
  17. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  18. K. Ravi, R. Kodandan and P. Narasimman, Stability of cubic and additive functional equation in quasi-Banach spaces, Int. J. Pure Appl. Math. 54 (2009), 111-127.
  19. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
  20. Z. Wang and P. K. Sahoo, Approximation of the mixed additive and cubic functional equation in paranormed spaces, Journal of Nonlinear Sciences and Apllications (JNSA) 10(5) (2017), 2633-2641. https://doi.org/10.22436/jnsa.010.05.29
  21. T. Z. Xu, and J. M. Rassias, On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces, Abstr. Appl. Anal. 2012 ( 2012), Article ID 926390, 23 pages.
  22. T. Z. Xu, J. M. Rassias, and W. X. Xu, Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys. 51 (2010), 063519. https://doi.org/10.1063/1.3431968
  23. T. Z. Xu, J. M. Rassias, and W. X. Xu, On the stability of a general mixed additive-cubic functional equation in random normed spaces, J. Inequal. Appl. 328473 2010 (2010), 16 pages.
  24. T. Z. Xu, J. M. Rassias, and W. X. Xu, A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasi fuzzy normed spaces, International Journal of the Physical Sciences 6(2) (2011), 313-324.