References
- M. Arunkumar, P. Agilan, and S. Ramamoorthi, Perturbation of AC-mixed type functional equation, In Proceedings of National conference on Recent Trends in Mathematics and Computing (NCRTMC-2013) 7-14.
- M. Arunkumar, C. Devi, S. Mary, Perturbation of Ac-Mixed Type Functional Equation: A Fixed Point Approach, International Journal of Computing Algoritheorem 3 (2014), 1060-1066.
- L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory, Grazer Mathematische Berichte, Karl-Franzens-Universitaet, Graz, Graz, Austria 346 (2004), 43-52.
- J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
- A. Ebadian and S. Zolfaghari, Stability of a mixed additive and cubic functional equation in several variables in non-Archimedean spaces, S. Ann. Univ. Ferrara 58(2) (2012), 291-306. https://doi.org/10.1007/s11565-012-0152-x
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. and Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- Additive-cubic functional equations from additive groups into non-Archimedean Banach spaces, Filomat 27(5) (2013), 731-738. https://doi.org/10.2298/FIL1305731E
- D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K.-W.Jun and H.-M. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, Bull. Belg. Math. Soc. 13(2) (2006), 271-285. https://doi.org/10.36045/bbms/1148059462
- S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic functional equation, Korean J. Math. 27 (2019), 343-355. https://doi.org/10.11568/KJM.2019.27.2.343
- S.-S. Jin and Y.-H. Lee, A fixed point approach to the stability of the quadratic and quartic type functional equation, J. Chungcheong Math. Soc. 32 (2019), 337-347. https://doi.org/10.14403/jcms.2019.32.3.337
- S.-S. Jin and Y.-H. Lee, On the Hyers-Ulam-Rassias stability of an additive-cubic functional equation, Int. J. Math. Anal. (Ruse) 13(2) (2019), 213-221. https://doi.org/10.12988/ijma.2019.9320
- Y.-H. Lee, A fixed point approach to the stability of a quadratic-cubic-quartic functional equation, East Asian Math. J. 35 (2019), 559-568. https://doi.org/10.7858/EAMJ.2019.044
- A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 342 (2008), 1318-1331. https://doi.org/10.1016/j.jmaa.2007.12.039
- J. M. Rassias, K.Ravi, M. Arunkumar and B. V. S. Kumar, Solution and Ulam stability of mixed type cubic and additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, 149-175.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- K. Ravi, R. Kodandan and P. Narasimman, Stability of cubic and additive functional equation in quasi-Banach spaces, Int. J. Pure Appl. Math. 54 (2009), 111-127.
- S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
- Z. Wang and P. K. Sahoo, Approximation of the mixed additive and cubic functional equation in paranormed spaces, Journal of Nonlinear Sciences and Apllications (JNSA) 10(5) (2017), 2633-2641. https://doi.org/10.22436/jnsa.010.05.29
- T. Z. Xu, and J. M. Rassias, On the Hyers-Ulam stability of a general mixed additive and cubic functional equation in n-Banach spaces, Abstr. Appl. Anal. 2012 ( 2012), Article ID 926390, 23 pages.
- T. Z. Xu, J. M. Rassias, and W. X. Xu, Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys. 51 (2010), 063519. https://doi.org/10.1063/1.3431968
- T. Z. Xu, J. M. Rassias, and W. X. Xu, On the stability of a general mixed additive-cubic functional equation in random normed spaces, J. Inequal. Appl. 328473 2010 (2010), 16 pages.
- T. Z. Xu, J. M. Rassias, and W. X. Xu, A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasi fuzzy normed spaces, International Journal of the Physical Sciences 6(2) (2011), 313-324.