DOI QR코드

DOI QR Code

흰점박이꽃무지 사육 환경에 따른 곤충 병원성 곰팡이 Metarhizium anisopliae의 병원성

Pathogenicity of Entomopathogenic Fungus, Metarhizium anisopliae in Protaetia brevitarsis seulensis under Different Rearing Conditions

  • 김낭희 (국립농업과학원 곤충산업과) ;
  • 김은선 (국립농업과학원 곤충산업과) ;
  • 송명하 (국립농업과학원 곤충산업과) ;
  • 곽규원 (국립농업과학원 곤충산업과) ;
  • 박관호 (국립농업과학원 곤충산업과) ;
  • 김용순 (국립농업과학원 곤충산업과)
  • Kim, Nang-Hee (Industrial Insect Division, National Institute of Agricultural Science, Rural Development Admistration) ;
  • Kim, Eunsun (Industrial Insect Division, National Institute of Agricultural Science, Rural Development Admistration) ;
  • Song, Myung-Ha (Industrial Insect Division, National Institute of Agricultural Science, Rural Development Admistration) ;
  • Kawk, Kyu-Won (Industrial Insect Division, National Institute of Agricultural Science, Rural Development Admistration) ;
  • Park, Kwan-Ho (Industrial Insect Division, National Institute of Agricultural Science, Rural Development Admistration) ;
  • Kim, Yongsoon (Industrial Insect Division, National Institute of Agricultural Science, Rural Development Admistration)
  • 투고 : 2019.11.27
  • 심사 : 2020.02.12
  • 발행 : 2020.03.31

초록

Metarhizium anisopliae (녹강균)는 흰점박이꽃무지에게 질병을 일으키는 곤충 병원성 곰팡이 중 하나이다. 이러한 곰팡이의 병원성은 환경 조건에 의해 영향을 받는다. 녹강균에 대한 흰점박이꽃무지 유충의 민감성을 알기 위해 온도(20℃, 25℃, 30℃), 상대습도(RH 40%, 50%, 60%, 70%), 톱밥 수분함량(40%, 50%, 60%)이 다른 사육 조건에서 유충의 치사율을 확인하였다. 녹강균을 처리한 흰점박이꽃무지 유충의 치사율은 온도에 따라 차이가 나타나지 않았으나, 낮은 상대습도(RH 40%)와 톱밥 수분함량(40%)에서 유충의 치사율이 높았다. 녹강균에 대한 1령, 2령, 3령 유충의 치사율은 1령에서 가장 높게 나타났다.

Metarhizium anisopliae is one of the entomopathogenic fungi infecting Protaetia brevitarsis seulensis. Environmental conditions strongly affect the virulence of entomopathogenic fungus. To test the susceptibility of P. brevitarsis seulensis larvae to M. anisopliae, we determined level mortality rates under different rearing conditions: temperatures (20℃, 25℃, 30℃), relative humidities (RH; RH 40%, 50%, 60%, 70%), and water content in sawdust (40%, 50%, 60%). The mortality rate of larvae treated with 5×106 conidia mL-1 M. anisopliae was not significantly affected by rearing temperature, but was affected by low RH (40%) and low water content in sawdust (40%), both of which resulted in high mortality rates. Mortality rated among M. anisopliae-treated 1st, 2nd, and 3rd instar larvae were highest in 1st instar larvae.

키워드

참고문헌

  1. Akbar, W., J.C. Lord, J.R. Nechols and R.W. Howard. 2004. Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. Journal of Economic Entomology 97:273-280. https://doi.org/10.1603/0022-0493-97.2.273
  2. Anand, R., B. Presad and B.N. Tiwary. 2009. Relative susceptibility of Spodoptera litura pupae to selected entomopathogenic fungi. Biocontrol 54: 85-92. https://doi.org/10.1007/s10526-008-9157-x
  3. Athanassiou, C.G., N.G. Kavallieratos, C.I. Rumbos and D.C. Kontodimas. 2017. Influence of temperature and relative humidity on the insecticidal efficacy of Metarhizium anisopliae against larvae of Ephestia kuehniella (Lepidoptera:Pyralidae) on wheat. Journal of Insect Science 17: 1-7. https://doi.org/10.1093/jisesa/iew097
  4. Douro-Kpindou, O.K., D.A. Djegui, I.A. Glitho and M. TamO. 2012. Sensitivity of Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) to the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana in laboratory. Journal of Agriculture and Biology Science 7: 1007-1015.
  5. Erler, F. and A.O. Ates. 2015. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. Journal of Insect Science 15: 44. https://doi.org/10.1093/jisesa/iev029
  6. Gillespie, A.T. and E. Crawford. 1986. Effect of water activity on conidial germination and mycelial growth of Beauveria bassiana, Metarhizium anisopliae, Paecilomyces spp. and Verticillium lecanii, p. 254. In fundamental and applies aspects of invertebrate pathology (Proceedings of the fourth international colloquium of invertebrate pathology) (Samson, R.A., J.M. Vlak and D. Peters, eds.).
  7. Goettel, M.S., J. Eilenberg and T. Glare. 2005. Entomopathogenic fungi and their role in regulation of insect populations, p. 361-405. In: Molecular insect science (Gilbert, L.K., K. Iatrou, S.S. Gill, eds.). Elservier, New York, USA.
  8. Hafez, M., F.N. Zaki, A. Moursy and M. Sabbour. 1997. Biological effects of the entomopathogenic fungus, Beauveria bassiana on the potato tuber moth Phthorimaea operculella (Seller). Journal of Pest Science 70: 158-159.
  9. Hall, R.A. 1981. The fungus Verticillium lecanii as a microbial insecticide against aphids and scales, p. 483-498. In: Microbial control of pests and plant diseases 1970-1980 (Burges H.D. ed.). Academic press, London.
  10. Hammer, O., D.A.T. Harper and P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Paleaeontologica Electronica 4: 1-9.
  11. Han, J.H., J.J. Kim and S.Y. Lee. 2014. Insecticidal activity of Metarhizium anisopliae FT83 against the different stages of beet armyworm, Spodoptera exigua. Korean Journal of Pesticide Science 18: 417-421. https://doi.org/10.7585/kjps.2014.18.4.417
  12. Hussain, A., M.Y. Tian, Y.R. Ho and S. Ahmed. 2009. Entomopathogenic fungi disturbed the larval growth and feeding performance of Ocinara varians (Lepidoptera: Bombycidae) larvae. Insect Science 16: 511-517. https://doi.org/10.1111/j.1744-7917.2009.01272.x
  13. Hywel-Jones, N.L. and A.T. Gillespie. 1990. Effect of temperature on spore germination in Metarhizium anisopliae and Beauveria bassiana. Mycological Research 94: 389-392. https://doi.org/10.1016/S0953-7562(09)80363-8
  14. Indriyanti, D.R., P. Widiyaningrum, Haryuni, M. Slamet and Y.A. Maretta. 2017. Effectiveness of Metarhizium anisopliae and entomopathogenic nematodes to control Oryctes rhinoceros larvae in the rainy season. Parkistan Journal of Biological Sciences 20: 320-327. https://doi.org/10.3923/pjbs.2017.320.327
  15. Kim, H.G. and K.H. Kang. 2006. Imago's flight and larval activites of Protaetia brevitarsis (Coleoptera: Scarabaeidae) and Allomyrian dichotoma (Coleoptera: Dynastinae). Korean Journal of Applied Entomology 45: 139-143.
  16. Kim, H.G., K.H. Kang and C.Y. Hwang. 2005. Effect of some environmental factors on oviposition and developmental characteristic of Protaetia brevitarsis and Allomyrina dichotoma. Korean Journal of Applied Entomology 44: 283-286.
  17. Lee, J.B. and Y.J. Park. 2015. Insecticidal effect of entomopathogenic fungus, Beauveria bassiana ANU1 to Spodoptera exigua and Plutella xylostella by different temperature and humidity conditions. The Korean Society of Pesticide Science 19: 125-133. https://doi.org/10.7585/kjps.2015.19.2.125
  18. Lee, M.R., J.C. Kim, S.J. Lee, S. Kim, S.J. Lee, S.E. Park, W.H. Lee and J.S. Kim. 2017. Assessment of physiological activity of entomopathogenic fungi with insecticidal activity against locusts. Korean Journal of Applied Entomology 56:301-308. https://doi.org/10.5656/KSAE.2017.08.0.019
  19. Lord, J.C. 2005. Low humidity, moderate temperature, and desiccant dust favor efficacy of Beauveria bassiana (Hyphomycetes:Moniliales) for the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bruchidae). Biological Control 34:180-186. https://doi.org/10.1016/j.biocontrol.2005.05.004
  20. Luz, C. and J. Fargues. 1997. Temperature and moisture requirement for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia 138: 117-125. https://doi.org/10.1023/A:1006803812504
  21. Mitchell, M.J. and A. Cali. 1994. Vairimorpha necatrix (Microsporidia:Burenellidae) affects growth and development of Heliothis zea (Lepidoptera: Noctuidae) raised at various temperatures. Journal of Economic Entomology 87: 933-940. https://doi.org/10.1093/jee/87.4.933
  22. Mittal, I.C. 2000. Survey of Scarabaeid (Coleoptera) fauna of Himanchal Pradesh (India). Journal of Entomological Research 24: 133-141.
  23. Park, H.Y., S.S. Park, H.W. Oh and J.I. Kim. 1994. General characteristics of the white-spotted flower chafer, Protaetia brevitarsis reared in the laboratory. Korean Journal of Entomology 24: 1-5.
  24. Riddick, E.W. and Z. Wu. 2015. Effects of rearing density on survival, growth, and development of the ladybird Coleomegilla maculata in culture. Insects 6: 858-868. https://doi.org/10.3390/insects6040858
  25. Roberts, D.W. and R.J. St. Leger. 2004. Metarhizium spp., Cosmopolitan Insect-pathogenic Fungi: Mycological Aspects. Advances in Applied Microbiology 54: 1-70. https://doi.org/10.1016/S0065-2164(04)54001-7
  26. Saleem, A.R. and R.A. Ibrahim. 2019. Assessment of the virulence and proteolytic activity of three native entomopathogenic fungi against the larvae of Oryctes Agamemnon (Burmeister) (Coleoptera: Scarabaeidae). Egytpian Journal of Biological Pest Control 29: 21. https://doi.org/10.1186/s41938-019-0120-1
  27. Shah, P.A. and J.K. Pell. 2003. Entomopathogenic fungi as biological control agents. Applied Microbiology and Biotechnology 61: 413-423. https://doi.org/10.1007/s00253-003-1240-8
  28. Sharififard, M., M.S. Mossadegh and B. Vazirianzadeh. 2012. Effects of temperature and humidity on the pathogenicity of the entomopathogenic fungi in control of the house fly, Musca domestica L. (Diptera: Muscidae) under laboratory conditions. Journal of Entomology 9: 282-288. https://doi.org/10.3923/je.2012.282.288
  29. Shin, M.K. 1986. Clinical traditional herbalogy. Young Lim Press Co. Seoul (Korea). p. 482.
  30. Song, M.H., M.H. Han, S. Lee, E.S. Kim, K.H. Park, W.T. Kim and J.Y. Choi. 2017. A field survey on edible insect farms in Korea. Journal of Life Science 27: 702-707. https://doi.org/10.5352/JLS.2017.27.6.702