Acknowledgement
The authors gratefully acknowledge the support of the NSFC (No. 11572347 and 11872071) and the China Scholarship Council (CSC). Computational resources were provided by hpc@polito.it, a project of Academic Computing within the Department of Control and Computer Engineering at the Politecnico di Torino.
References
- Anderson, J. (1982), Modern Compressible Flow with Historical Perspective, McGraw-Hill,New York, USA.
- Barger, R.L. (1981), "A procedure for designing forebodies with constraints on cross-section shape and axial area distribution", Scientific and Technical Information Branch, Hampton, USA.
- Billig, F., Baurle, R. and Tam, C. (1999), "Design and analysis of streamline traced hypersonic inlets",9th Int. Space Planes and Hypersonic Syst. & Technol. Conf., Norfolk, VA. https://doi.org/10.2514/6.1999-4974
- Busemann, A. (1942), "Die Achsenssymmetrische Kegelizeuber-Schallstromung", Luftfahrtforschung, 19, 137-144.
- Cui, K., Hu, S., Li, G., Qu, Z. and Situ, M. (2013), "Conceptual design and aerodynamic evaluation of hypersonic airplane with double flanking air inlets", Sci. China Technol. Sc., 56, 1980-1988. https://doi.org/10.1007/s11431-013-5288-0
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. (2002), "A fast and elitist multiobjective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comp., 6(2), 182-197. https://doi.org/10.1109/4235.996017
- Degregori, E. and Ferlauto, M. (2018), "Optimal aerodynamic design of scramjet facility nozzles", AIP Conf. Proc., 1978(1), 470114. https://doi.org/10.1063/1.5048596
- Ding, F., Liu, J., Huang, W., Peng, C. and Chen, S. (2019), "An airframe/inlet integrated fullwaverider vehicle design using as upgraded aerodynamic method", Aeronaut. J., 123(1266), 1135-1169. https://doi.org/10.1017/aer.2019.49
- Drayna, T.W., Nompelis, I. and Candler, G. (2006), "Hypersonic inward turning inlets: design and optimization", AIAA Paper 2006-297, 44th AIAA Aerosp. Sci. Meeting & Exhibit, Reno, NV. https://doi.org/10.2514/6.2006-297
- Ferlauto, M. (2013), "Inverse design of internally cooled turbine blades based on the heat adjoint equation.", Inverse Probl. Sci. En., 21(2), 269-282. https://doi.org/10.1080/17415977.2012.693079
- Ferlauto, M. (2015), "A pseudo-compressibility method for solving inverse problems based on the 3D incompressible Euler equations.", Inverse Probl. Sci. En., 23(5), 798-817. https://doi.org/10.1080/17415977.2014.939653
- Ferlauto, M. and Marsilio, R. (2014), "A computational approach to the simulation of controlled flows by synthetic jets actuators.", Adv. Aircraft Spacecraft Sci, 2(1), 77-94. https://doi.org/10.12989/aas.2015.2.1.077
- Ferlauto, M. and Marsilio, R. (2016), "A numerical method for the study of fluidic thrust vectoring", Adv. Aircraft Spacecraft Sci, 3(4), 367-378. https://doi.org/10.12989/aas.2016.3.4.367
- Ferlauto, M. and Marsilio, R. (2018), "Numerical simulation of the unsteady flowfield in complete propulsion systems", Adv. Aircraft Spacecraft Sci, 5(3), 349-362. https://dx.doi.org/10.12989/aas.2018.5.3.349
- Gollan, R. and Smart, M. (2013), "Design of modular shape-transition inlets for a conical hypersonic vehicle", J. Propul. Pow., 29(4), 832-838. https://doi.org/10.2514/1.B34672
- Hornung, H. (2000), "Oblique shock reflection from an axis of symmetry", J. Fluid Mech., 409, 1-12. https://doi.org/10.1017/S0022112099007831
- Iollo, A., Ferlauto, M. and Zannetti, L. (2001), "An aerodynamic optimization method based on the inverse problem adjoint equations", J. Comput. Phys., 173, 87-115. https://doi.org/10.1006/jcph.2001.6845
- Kothari, A., Tarpley, C. and McLaughlin, T. (1996), "Hypersonic vehicle design using inward turning flow fields", AIAA Paper 1996-2552, 32nd Joint Propul. Conf., Buena Vista, FL. https://doi.org/10.2514/6.1996-2552
- Kuranov, A. and Korabelnikov, A. (2008), "Atmospheric cruise flight challenges for hypersonic vehicles under the AJAX concept", J. Propul. Pow., 24(6), 1229-1247. https://doi.org/10.2514/1.24684
- Liu, J., Ding, F., Huang, W. and Jin, L. (2014), "Novel approach for designing a hypersonic glidingcruising dual waverider vehicle", Acta Astronaut., 102, 81-88. https://doi.org/10.1016/j.actaastro.2014.04.024
- Molder, S. and Szpiro, E. (1966), "Busemann inlet for hypersonic speeds", J.Spacecraft Rockets, 3(8), 1303-1304. https://doi.org/10.2514/3.28649
- Poinsot, T. and Lele, S. (1992), "Boundary conditions for direct simulations of compressible viscous reacting flows", J. Comput. Phys., 101, 104-129. https://doi.org/10.1016/0021-9991(92)90046-2
- Ramasubramanian, V., Starkey, R. and Lewis, M. (2008), "An Euler numerical study of Busemann and quasi-Busemann hypersonic inlets at on- and off-design speeds", AIAA Paper 2008-66, 46th AIAA Aerosp. Sci. Meeting & Exhibit, Reno, NV. https://doi.org/10.2514/6.2008-66
- Smart, M. (1999), "Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition", J. Propul. Pow., 15(3), 408-416. https://doi.org/10.2514/2.5459
- Smart, M.K. (2001), "Experimental testing of a hypersonic inlet with rectangular-to-elliptical shape transition", J. Propul. Pow., 17(2), 276-283. https://doi.org/10.2514/2.5774
- Wang, C., Tian, X. and Yan, L. (2015), "Preliminary integrated design of hypersonic vehicle configurations including inward-turning inlets", J. Aerospace Eng., 28, 04014143. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000480
- Wang, J., Cai, J., Duan, T. and Tian, Y. (2017), "Design of shape morphing hypersonic inwardturning inlet using multistage optimization", Aerospace Sci. Technol., 66, 44-58. https://doi.org/10.1016/j.ast.2017.02.018
- Xiong, B., Fan, X. and Wang, Y. (2019a), "Parameterization and optimization design of a hypersonic inward turning inlet", Acta Astronaut., 164, 130-141. https://doi.org/10.1016/j.actaastro.2019.07.004
- Xiong, B., Ferlauto, M. and Fan, X. (2019b), "Parametric generation and computational analysis of a REST inlet", 5th ECCOMAS Young Investig. Conf. (YIC2019), Krakow, Poland.
- You, Y. (2011), "An overview of the advantages and concerns of hypersonic inward turning inlets", AIAA Paper 2011-2269 17th AIAA Int. Space Planes and Hypersonic Syst. and Techol. Conf., San Francisco, USA. https://doi.org/10.2514/6.2011-2269