Two-dimensional Materials and Metal-organic Framework based Taste Sensors

2차원 물질과 금속유기골격체 기반 미각 센서 연구동향

  • Yoo, Youngtaek (Department of Material Science and Engineering, Korea University) ;
  • Hasani, Amirhossein (Department of Material Science and Engineering, Korea University) ;
  • Do, Ha Huu (Department of Material Science and Engineering, Korea University) ;
  • Kim, Soo Young (Department of Material Science and Engineering, Korea University)
  • 유영택 (고려대학교 신소재공학부) ;
  • ;
  • ;
  • 김수영 (고려대학교 신소재공학부)
  • Published : 2020.06.30

Abstract

식품 산업에서 제품의 품질을 향상시키기 위해서는 약한 세기의 맛에서도 다양한 종류의 맛을 감지해낼 수 있어야만 한다. 이러한 목적 달성을 위해서 2차원 물질과 금속유기골격체(metal-organic framework, MOF)를 이용한 미각 감지 센서에 대한 연구들이 한창 진행 중이다. 2차원 물질 및 MOF는 고유한 특성으로 인하여 현재 다양한 분야에서 많은 관심을 받아오고 있으며 화학 및 생화학 감지 등 다양한 분야에서도 응용될 수 있다. 본 기고문에서는 미각 감지 응용에서 2차원 물질과 MOF의 최신 연구동향을 다루고자 한다. 본 기고문을 통하여 미각 감지 응용 분야에서 2차원 물질과 MOF의 작용 메커니즘을 이해하고 현재의 연구 현황 및 앞으로의 발전 방향을 알아보고자 한다.

Keywords

References

  1. A. Hasani, Q. Van Le, M. Tekalgne, M.-J. Choi, T. H. Lee, S. Y. Kim, and H. W. Jang, Direct synthesis of two-dimensional MoS2 on p-type Si and application to solar hydrogen production, NPG Asia Mater., 11(1), 1-9 (2019). https://doi.org/10.1038/s41427-018-0100-z
  2. A. Hasani, Q. Van Le, M. Tekalgne, M.-J. Choi, S. Choi, T. H. Lee, H. Kim, S. H. Ahn, H. W. Jang, and S. Y. Kim, Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis, ACS Applied Materials & Interfaces, 11(33), 29910-29916 (2019). https://doi.org/10.1021/acsami.9b08654
  3. A. Hasani, M. Tekalgne, Q. Van Le, H. W. Jang, and S. Y. Kim, Two-dimensional materials as catalysts for solar fuels: Hydrogen evolution reaction and CO2 reduction, J. Mater. Chem. A (2019).
  4. A. Hasani, Q.V. Le, M. Tekalgne, M.-J. Choi, T. H. Lee, S. H. Ahn, H. W. Jang, and S. Y. Kim, Fabrication of a WS2/p-Si heterostructure photocathode using direct hybrid thermolysis, ACS Applied Materials & Interfaces (2019).
  5. A. Hasani, J. N. Gavgani, R. M. Pashaki, S. Baseghi, A. Salehi, D. Heo, S. Y. Kim, and M. Mahyari, Poly (3,4-ethylenedioxythiophene): Poly (styrenesulfonate)/iron (III) porphyrin supported on S and N co-doped graphene quantum dots as a hole transport layer in polymer solar cells, Science of Advanced Materials, 9(9), 1616-1625 (2017). https://doi.org/10.1166/sam.2017.3181
  6. Q. Lu, Y. Yu, Q. Ma, B. Chen, and H. Zhang, 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater., 28(10), 1917-1933 (2016). https://doi.org/10.1002/adma.201503270
  7. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, and C.-H. Lee, Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production, Energy Environ. Sci., 9(7), 2240-2248 (2016). https://doi.org/10.1039/c6ee00144k
  8. Q. Zhang, L. Tan, Y. Chen, T. Zhang, W. Wang, Z. Liu, and L. Fu, Human-like sensing and reflexes of graphene-based films, Advanced Science, 3(12), 1600130 (2016). https://doi.org/10.1002/advs.201600130
  9. W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, and T. Gentle III, Tuning the structure and function of metal-organic frameworks via linker design, Chemical Society Reviews, 43(16), 5561-5593 (2014). https://doi.org/10.1039/c4cs00003j
  10. M. Safaei, M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, M. Khatami, A review on metal-organic frameworks: Synthesis and Applications, TrAC Trends in Analytical Chemistry (2019).
  11. M. T. Kapelewski, T. e. Runcevski, J. D. Tarver, H. Z. Jiang, K. E. Hurst, P. A. Parilla, A. Ayala, T. Gennett, S. A. FitzGerald, and C. M. Brown, Record high hydrogen storage capacity in the metal-organic framework Ni2 (m-dobdc) at near-ambient temperatures, Chemistry of Materials, 30(22), 8179-8189 (2018). https://doi.org/10.1021/acs.chemmater.8b03276
  12. S. Kayal, B. Sun, and A. Chakraborty, Study of metal-organic framework MIL-101 (Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks), Energy, 91, 772-781 (2015). https://doi.org/10.1016/j.energy.2015.08.096
  13. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and J. R. Long, Carbon dioxide capture in metal-organic frameworks, Chemical Reviews, 112(2), 724-781 (2011). https://doi.org/10.1021/cr2003272
  14. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C.-Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chemical Society Reviews, 43(16), 6011-6061 (2014). https://doi.org/10.1039/c4cs00094c
  15. P. K. Thallapally, C. A. Fernandez, R. K. Motkuri, S. K. Nune, J. Liu, and C. H. Peden, Micro and mesoporous metal-organic frameworks for catalysis applications, Dalton Transactions, 39(7), 1692-1694 (2010). https://doi.org/10.1039/b921118g
  16. J. Duan, S. Chen, and C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nature Communications, 8, 15341 (2017). https://doi.org/10.1038/ncomms15341
  17. Y. Liu, C.S. Gong, Y. Dai, Z. Yang, G. Yu, Y. Liu, M. Zhang, L. Lin, W. Tang, and Z. Zhou, In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery, Biomaterials, 218, 119365 (2019). https://doi.org/10.1016/j.biomaterials.2019.119365
  18. F. Su, Q. Jia, Z. Li, M. Wang, L. He, D. Peng, Y. Song, Z. Zhang, and S. Fang, Aptamer-templated silver nanoclusters embedded in zirconium metal-organic framework for targeted antitumor drug delivery, Microporous and Mesoporous Materials, 275, 152-162 (2019). https://doi.org/10.1016/j.micromeso.2018.08.026
  19. S. Rojas, F. J. Carmona, C. R. Maldonado, P. Horcajada, T. Hidalgo, C. Serre, J. A. Navarro, and E. Barea, Nanoscaled zinc pyrazolate metal-organic frameworks as drug-delivery systems, Inorganic Chemistry, 55(5), 2650-2663 (2016). https://doi.org/10.1021/acs.inorgchem.6b00045
  20. W. Xia, A. Mahmood, R. Zou, and Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion, Energy & Environmental Science, 8(7), 1837-1866 (2015). https://doi.org/10.1039/c5ee00762c
  21. R. Antwi-Baah and H. Liu, Recent hydrophobic metal-organic frameworks and their applications, Materials, 11(11), 2250 (2018). https://doi.org/10.3390/ma11112250
  22. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. z. r. Yazaydin, and J. T. Hupp, Metal-organic framework materials with ultrahigh surface areas: Is the sky the limit?, Journal of the American Chemical Society, 134(36), 15016-15021 (2012). https://doi.org/10.1021/ja3055639
  23. H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, and J. Kim, Ultrahigh porosity in metal-organic frameworks, Science, 329(5990), 424-428 (2010). https://doi.org/10.1126/science.1192160
  24. W. Meng, Y. Zeng, Z. Liang, W. Guo, C. Zhi, Y. Wu, R. Zhong, C. Qu, and R. Zou, Tuning expanded pores in metal-organic frameworks for selective capture and catalytic conversion of carbon dioxide, Chem. Sus. Chem, 11(21), 3751-3757 (2018). https://doi.org/10.1002/cssc.201801585
  25. F. Wang, X. Chen, L. Chen, J. Yang, and Q. Wang, High-performance non-enzymatic glucose sensor by hierarchical flower-like nickel (II)-based MOF/carbon nanotubes composite, Materials Science and Engineering: C, 96, 41-50 (2019). https://doi.org/10.1016/0025-5416(87)90538-6
  26. A. Chidambaram and K. C. Stylianou, Electronic metal-organic framework sensors, Inorganic Chemistry Frontiers, 5(5), 979-998 (2018). https://doi.org/10.1039/c7qi00815e
  27. Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, and X.-H. Xia, Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 34(1), 125-131 (2012). https://doi.org/10.1016/j.bios.2012.01.030
  28. M. Govindhan, M. Amiri, and A. Chen, Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine, Biosens. Bioelectron., 66, 474-480 (2015). https://doi.org/10.1016/j.bios.2014.12.012
  29. B. Mailly-Giacchetti, A. Hsu, H. Wang, V. Vinciguerra, F. Pappalardo, L. Occhipinti, E. Guidetti, S. Coffa, J. Kong, and T. Palacios, pH sensing properties of graphene solution-gated field-effect transistors, J. Appl. Phys., 114(8), 084505 (2013).
  30. H. Wang, P. Zhao, X. Zeng, C. D. Young, and W. Hu, High-stability pH sensing with a few-layer MoS2 field-effect transistor, Nanotechnology, 30(37), 375203 (2019). https://doi.org/10.1088/1361-6528/ab277b
  31. A. Kundu, R. K. Layek, A. Kuila, and A. K. Nandi, Highly fluorescent graphene oxide-poly (vinyl alcohol) hybrid: An effective material for specific Au3+ ion sensors, ACS Applied Materials & Interfaces, 4(10), 5576-5582 (2012). https://doi.org/10.1021/am301467z
  32. P. Li, D. Zhang, Y. e. Sun, H. Chang, J. Liu, and N. Yin, Towards intrinsic MoS2 devices for high performance arsenite sensing, Appl. Phys. Lett., 109(6), 063110 (2016).
  33. P. Kumar, A. Deep, and K.-H. Kim, Metal organic frameworks for sensing applications, TrAC Trends in Analytical Chemistry, 73, 39-53 (2015). https://doi.org/10.1016/j.trac.2015.04.009
  34. V. V. e. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Metal-organic frameworks: Structure, properties, methods of synthesis and characterization, Russian Chemical Reviews, 85(3), 280 (2016). https://doi.org/10.1070/RCR4554
  35. A. Mahmood, W. Guo, H. Tabassum, and R. Zou, Metal-organic framework-based nanomaterials for electrocatalysis, Advanced Energy Materials, 6(17), 1600423 (2016). https://doi.org/10.1002/aenm.201600423
  36. Y. Bian, N. Xiong, and G. Zhu, Technology for the remediation of water pollution: A review on the fabrication of metal organic frameworks, Processes, 6(8), 122 (2018). https://doi.org/10.3390/pr6080122
  37. N. A. Khan and S. H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction, Coordination Chemistry Reviews, 285, 11-23 (2015). https://doi.org/10.1016/j.ccr.2014.10.008
  38. W.-J. Li, M. Tu, R. Cao, and R. A. Fischer, Metal-organic framework thin films: Electrochemical fabrication techniques and corresponding applications & perspectives, Journal of Materials Chemistry A, 4(32), 12356-12369 (2016). https://doi.org/10.1039/C6TA02118B
  39. Y.-R. Lee, J. Kim, and W.-S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean Journal of Chemical Engineering, 30(9), 1667-1680 (2013). https://doi.org/10.1007/s11814-013-0140-6
  40. M. Sanchez-Sanchez, N. Getachew, K. Diaz, M. Diaz-Garcia, Y. Chebude, and I. Diaz, Synthesis of metal-organic frameworks in water at room temperature: salts as linker sources, Green Chemistry, 17(3), 1500-1509 (2015). https://doi.org/10.1039/c4gc01861c
  41. H. Reinsch, "Green" synthesis of metal-organic frameworks, European Journal of Inorganic Chemistry, 2016(27), 4290-4299 (2016). https://doi.org/10.1002/ejic.201600286
  42. F. Xie, T. Liu, L. Xie, X. Sun, and Y. Luo, Metallic nickel nitride nanosheet: An efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing, Sensors and Actuators B: Chemical, 255, 2794-2799 (2018). https://doi.org/10.1016/j.snb.2017.09.095
  43. P. Vennila, D. J. Yoo, and A. R. Kim, Ni-Co/Fe3O4 flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications, Journal of Alloys and Compounds, 703, 633-642 (2017). https://doi.org/10.1016/j.jallcom.2017.01.044
  44. Y. Cui, Y. Yue, G. Qian, and B. Chen, Luminescent functional metal-organic frameworks, Chemical Reviews, 112(2), 1126-1162 (2011). https://doi.org/10.1021/cr200101d
  45. M. Allendorf, C. Bauer, R. Bhakta, and R. Houk, Luminescent metal-organic frameworks, Chemical Society Reviews, 38(5), 1330-1352 (2009). https://doi.org/10.1039/b802352m
  46. N. S. Lopa, M. M. Rahman, F. Ahmed, S. C. Sutradhar, T. Ryu, and W. Kim, A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose, Journal of Electroanalytical Chemistry, 822, 43-49 (2018). https://doi.org/10.1016/j.jelechem.2018.05.014
  47. P. Arul and S. A. John, Electrodeposition of CuO from Cu-MOF on glassy carbon electrode: A non-enzymatic sensor for glucose, Journal of Electroanalytical Chemistry, 799, 61-69 (2017). https://doi.org/10.1016/j.jelechem.2017.05.041
  48. H. Yamagiwa, S. Sato, T. Fukawa, T. Ikehara, R. Maeda, T. Mihara, and M. Kimura, Detection of volatile organic compounds by weight-detectable sensors coated with metal-organic frameworks, Scientific Reports, 4, 6247 (2014). https://doi.org/10.1038/srep06247
  49. T. Lee, H. L. Lee, M. H. Tsai, S.-L. Cheng, S.-W. Lee, J.-C. Hu, and L.-T. Chen, A biomimetic tongue by photoluminescent metal-organic frameworks, Biosensors and Bioelectronics, 43, 56-62 (2013). https://doi.org/10.1016/j.bios.2012.11.014
  50. L. Poretsky, Principles of diabetes mellitus, Springer (2010).
  51. C. Divert, C. Chabanet, R. Schoumacker, C. Martin, C. Lange, S. Issanchou, and S. Nicklaus, Relation between sweet food consumption and liking for sweet taste in French children, Food Quality and Preference, 56, 18-27 (2017). https://doi.org/10.1016/j.foodqual.2016.09.009
  52. X. Zhang, Z. Zhang, Q. Liao, S. Liu, Z. Kang, and Y. Zhang, Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite, Sensors, 16(11), 1791 (2016). https://doi.org/10.3390/s16111791
  53. R. A. Soomro, O. P. Akyuz, R. Ozturk, and Z. H. Ibupoto, Highly sensitive non-enzymatic glucose sensing using gold nanocages as efficient electrode material, Sensors and Actuators B: Chemical, 233, 230-236 (2016). https://doi.org/10.1016/j.snb.2016.04.065
  54. J. Cui, S. B. Adeloju, and Y. Wu, Integration of a highly ordered gold nanowires array with glucose oxidase for ultra-sensitive glucose detection, Analytica Chimica Acta, 809, 134-140 (2014). https://doi.org/10.1016/j.aca.2013.11.024
  55. Y. Koskun, A. Savk, B. Sen, and F. Sen, Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites, Analytica Chimica Acta, 1010, 37-43 (2018). https://doi.org/10.1016/j.aca.2018.01.035
  56. K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, and L. Li, In situ fabrication of Ni (OH) 2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing, Sensors and Actuators B: Chemical, 240, 979-987 (2017). https://doi.org/10.1016/j.snb.2016.09.077
  57. Q. Qian, Q. Hu, L. Li, P. Shi, J. Zhou, J. Kong, X. Zhang, G. Sun, and W. Huang, Sensitive fiber microelectrode made of nickel hydroxide nanosheets embedded in highly-aligned carbon nanotube scaffold for nonenzymatic glucose determination, Sensors and Actuators B: Chemical, 257, 23-28 (2018). https://doi.org/10.1016/j.snb.2017.10.110
  58. X. Xiao, S. Zheng, X. Li, G. Zhang, X. Guo, H. Xue, and H. Pang, Facile synthesis of ultrathin Ni-MOF nanobelts for high-efficiency determination of glucose in human serum, Journal of Materials Chemistry B, 5(26), 5234-5239 (2017). https://doi.org/10.1039/C7TB00180K
  59. Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, and X. Sun, Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection, Sensors and Actuators B: Chemical, 278, 126-132 (2019). https://doi.org/10.1016/j.snb.2018.09.076
  60. I. Choi, Y. E. Jung, S. J. Yoo, J. Y. Kim, H.-J. Kim, C. Y. Lee, and J. H. Jang, Facile synthesis of M-MOF-74 (M = Co, Ni, Zn) and its application as an electrocatalyst for electrochemical CO2 conversion and H2 production, Journal of Electrochemical Science and Technology, 8(1), 61-68 (2017). https://doi.org/10.5229/JECST.2017.8.1.61
  61. D.-J. Lee, Q. Li, H. Kim, and K. Lee, Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seedingtechnique, Microporous and Mesoporous Materials, 163, 169-177 (2012). https://doi.org/10.1016/j.micromeso.2012.07.008
  62. X. Wu, Z. Bao, B. Yuan, J. Wang, Y. Sun, H. Luo, and S. Deng, Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation, Microporous and Mesoporous Materials, 180, 114-122 (2013). https://doi.org/10.1016/j.micromeso.2013.06.023
  63. Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha, and T. Yildirim, Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges, Journal of the American Chemical Society, 135(32), 11887-11894 (2013). https://doi.org/10.1021/ja4045289
  64. T. W. Murinzi, T. A. Clement, V. Chitsa, and G. Mehlana, Copper oxide nanoparticles encapsulated in HKUST-1 metal-organic framework for electrocatalytic oxidation of citric acid, Journal of Solid State Chemistry, 268, 198-206 (2018). https://doi.org/10.1016/j.jssc.2018.09.003
  65. L. He, Y. Chen, L. Shi, and Y. Zhang, Application of copper-based heterogeneous catalysts in organic wastewater treatment, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2017, p. 012088.
  66. J. Liang, L. Li, K. Tong, Z. Ren, W. Hu, X. Niu, Y. Chen, and Q. Pei, Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes, ACS Nano, 8(2), 1590-1600 (2014). https://doi.org/10.1021/nn405887k
  67. X. Zhang, Y. Xu, and B. Ye, An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs), Journal of Alloys and Compounds, 767, 651-656 (2018). https://doi.org/10.1016/j.jallcom.2018.07.175
  68. X. Zhang, J. Luo, P. Tang, J. R. Morante, J. Arbiol, C. Xu, Q. Li, and J. Fransaer, Ultrasensitive binder-free glucose sensors based on the pyrolysis of in situ grown Cu MOF, Sensors and Actuators B: Chemical, 254, 272-281 (2018). https://doi.org/10.1016/j.snb.2017.07.024
  69. W. Meng, Y. Wen, L. Dai, Z. He, and L. Wang, A novel electrochemical sensor for glucose detection based on Ag@ ZIF-67 nanocomposite, Sensors and Actuators B: Chemical, 260, 852-860 (2018). https://doi.org/10.1016/j.snb.2018.01.109
  70. A. Katoch, R. Bhardwaj, N. Goyal, and S. Gautam, Synthesis, structural and optical study of Ni-doped Metal-organic framework for adsorption based chemical sensor application, Vacuum, 158, 249-256 (2018). https://doi.org/10.1016/j.vacuum.2018.09.019
  71. S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, and R. Moos, Metal-organic frameworks for sensing applications in the gas phase, Sensors, 9(3), 1574-1589 (2009). https://doi.org/10.3390/s90301574
  72. K. Sivasankar, K.K. Rani, S.-F. Wang, R. Devasenathipathy, and C.-H. Lin, Copper nanoparticle and nitrogen doped graphite oxide based biosensor for the sensitive determination of glucose, Nanomaterials, 8(6), 429 (2018). https://doi.org/10.3390/nano8060429
  73. L. Shi, X. Zhu, T. Liu, H. Zhao, and M. Lan, Encapsulating Cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing, Sensors and Actuators B: Chemical, 227, 583-590 (2016). https://doi.org/10.1016/j.snb.2015.12.092