DOI QR코드

DOI QR Code

Numerical formulation of P-I diagrams for blast damage prediction and safety assessment of RC panels

  • Mussa, Mohamed H. (Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia) ;
  • Mutalib, Azrul A. (Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia) ;
  • Hao, Hong (Centre for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University)
  • Received : 2018.12.17
  • Accepted : 2020.04.03
  • Published : 2020.09.10

Abstract

A numerical study is carried out to assess the dynamic response and damage level of one- and two-way reinforced concrete (RC) panels subjected to explosive loads by using finite element LS-DYNA software. The precision of the numerical models is validated with the previous experimental test. The calibrated models are used to conduct a series of parametric studies to evaluate the effects of panel wall dimensions, concrete strength, and steel reinforcement ratio on the blast-resistant capacity of the panel under various magnitudes of blast load. The results are used to develop pressure-impulse (P-I) diagrams corresponding to the damage levels defined according to UFC-3-340-02 manual. Empirical equations are proposed to easily construct the P-I diagrams of RC panels that can be efficiently used to assess its safety level against blast loads.

Keywords

Acknowledgement

The authors would like to thank the Research University Grant (GUP-2018-029) and Fundamental Research Grant Scheme (FRGS/1/2015/TK01/UKM/02/4) for their financial support in order to accomplish the current research.

References

  1. Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711.
  2. Abbood, I. S., Mahmod, M., Hanoon, A. N., Jaafar, M. S. and Mussa, M. H. (2018), "Seismic response analysis of linked twin tall buildings with structural coupling", IJCIET, 9(11), 208-219.
  3. Abedini, M., Mutalib, A. A., Raman, S. N., Akhlaghi, E., Mussa, M. H. and Ansari, M. (2017), "Numerical investigation on the non-linear response of reinforced concrete (RC) columns subjected to extreme dynamic loads", J. Asian Sci. Res., 7(4), 86. https://doi.org/10.18488/journal.2.2017.74.86.98.
  4. Aghdamy, S., Wu, C. and Griffith, M. (2013), "Simulation of retrofitted unreinforced concrete masonry unit walls under blast loading", Int. J. Prot. Struct., 4(1), 21-44. https://doi.org/10.1260%2F2041-4196.4.1.21. https://doi.org/10.1260/2041-4196.4.1.21
  5. CEB-FIP, M. (1993), Design of Concrete Structures, British Standard Institution; London, United Kingdom.
  6. Christian, A. and Chye, G.O. (2014), "Performance of fiber reinforced high-strength concrete with steel sandwich composite system as blast mitigation panel", Procedia Eng., 95, 150-157. https://doi.org/10.1016/j.proeng.2014.12.174.
  7. Gebbeken, N. and Ruppert, M. (1999), "On the safety and reliability of high dynamic hydrocode simulations", Int. J. Numer. Meth. Eng., 46(6), 839-851. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6%3C839::AID-NME728%3E3.0.CO;2-R.
  8. Ha, J. H., Yi, N. H., Choi, J. K. and Kim, J. (2011), "Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading", Compos. Struct., 93(8), 2070-2082. https://doi.org/10.1016/j.compstruct.2011.02.014.
  9. Hou, X., Cao, S., Rong, Q. and Zheng, W. (2018), "A PI diagram approach for predicting failure modes of RPC one-way slabs subjected to blast loading", Int. J. Impact Eng., 120, 171-184. https://doi.org/10.1016/j.ijimpeng.2018.06.006.
  10. Krajcinovic, D. (1972), "Clamped circular rigid-plastic plates subjected to central blast loading", Comput. Struct., 2(4), 487-496. https://doi.org/10.1016/0045-7949(72)90003-X.
  11. Krauthammer, T., Astarlioglu, S., Blasko, J., Soh, T. and Ng, P. (2008), "Pressure-impulse diagrams for the behavior assessment of structural components", Int. J. Impact Eng., 35(8), 771-783. https://doi.org/10.1016/j.ijimpeng.2007.12.004.
  12. Lee, H.K. and Kim, S.E. (2016), "Comparative assessment of impact resistance of SC and RC panels using finite element analysis", Prog. Nuclear Energy, 90, 105-121. https://doi.org/10.1016/j.pnucene.2016.03.002.
  13. Lin, X., Zhang, Y. and Hazell, P.J. (2014), "Modelling the response of reinforced concrete panels under blast loading", Mater. Des., 56, 620-628. https://doi.org/10.1016/j.matdes.2013.11.069.
  14. Lin, X. and Zhang, Y. (2016), "Nonlinear finite element analysis of FRP-strengthened reinforced concrete panels under blast loads", Int. J. Comput. Methods, 13(04), 1641002. https://doi.org/10.1142/S0219876216410024.
  15. LSTC, L.D. (2012), Keyword Users Manual: Volume I, V971 R6. 0, Livermore, CA: Livermore Technology Software Corporation; USA.
  16. Malvar, L.J., Crawford, J.E., Wesevich, J.W. and Simons, D. (1997), "A plasticity concrete material model for DYNA3D", Int. J. Impact Eng., 19(9-10), 847-873. https://doi.org/10.1016/S0734-743X(97)00023-7.
  17. Malvar, L.J. (1998), "Review of static and dynamic properties of steel reinforcing bars", Mater. J., 95(5), 609-616.
  18. Malvar, L.J. and Ross, C. A. (1998), "Review of strain rate effects for concrete in tension", ACI Mater. J., 95, 735-739.
  19. Mendes, S. and Opat, H. (1973), "Tearing and shear failures in explosively loaded clamped beams", Exp. Mech., 13, 480-486. https://doi.org/10.1007/BF02322734
  20. Mussa, M.H., Mutalib, A.A., Hamid, R., Naidu, S.R., Radzi, N.A. M. and Abedini, M. (2017), "Assessment of damage to an underground box tunnel by a surface explosion", Tunn. Undergr. Space Technol., 66, 64-76. https://doi.org/10.1016/j.tust.2017.04.001.
  21. Mussa, M. H., Mutalib, A. A., Hamid, R. and Raman, S. N. (2018), "Dynamic properties of high volume fly ash nanosilica (HVFANS) concrete subjected to combined effect of high strain rate and temperature", Lat. Am. J. Solids Struct., 15(1). https://doi.org/10.1590/1679-78254900.
  22. Mussa, M. H. and Mutalib, A. A. (2018), "Effect of geometric parameters ($\beta$ and $\tau$) on behaviour of cold formed stainless steel tubular X-joints", Int. J. Steel Struct., 18(3), 821-830. https://doi.org/10.1007/s13296-018-0031-0.
  23. Mussa, M. H., Mutalib, A. A., Hamid, R. and Raman, S. N. (2018), "Blast damage assessment of symmetrical box-shaped underground tunnel according to peak particle velocity (PPV) and single degree of freedom (SDOF) criteria", Symmetry, 10(5), 158. https://doi.org/10.3390/sym10050158.
  24. Mussa, M. H., Abdulhadi, A. M., Abbood, I. S., Mutalib, A. A. and Yaseen, Z. M. (2020), "Late age dynamic strength of highvolume fly ash concrete with nano-silica and polypropylene fibres", Crystals, 10(4), 243. https://doi.org/10.3390/cryst10040243.
  25. Muszynski, L. C. and Purcell, M. R. (2003), "Composite reinforcement to strengthen existing concrete structures against air blast", J. Composite Constr., 7(2), 93-97. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(93).
  26. Mutalib, A. A. and Hao, H. (2011), "Development of PI diagrams for FRP strengthened RC columns", Int. J. Impact Eng., 38(5), 290-304. https://doi.org/10.1016/j.ijimpeng.2010.10.029.
  27. Mutalib, A. A., Mussa, M. H. and Abdulghafoor, A. M. (2018), "Finite element analysis of composite plate girders with a corrugated web", J. Eng. Sci. Technol., 13(9), 2978-2994.
  28. Mutalib, A. A., Mussa, M. H. and Abusal, K. M. (2018), "Numerical evaluation of concrete filled stainless steel tube for short columns subjected to axial compression load", J. Teknol., 80(2).
  29. Mutalib, A. A., Mussa, M. H. and Hao, H. (2019), "Effect of CFRP strengthening properties with anchoring systems on PI diagrams of RC panels under blast loads", Constr. Build. Mater., 200, 648-663. https://doi.org/10.1016/j.conbuildmat.2018.12.169.
  30. Mutalib, A. A., Mussa, M. H. and Taib, M. A. (2020), "Behaviour of prestressed box beam strengthened with CFRP under effect of strand snapping", GRAdEVINAR, 72(2), 103-113. https://doi.org/10.14256/JCE.2368.2018.
  31. Ngo, T. D. (2005), "Behaviour of high strength concrete subject to impulsive loading", Ph.D. Dissertation, The University of Melbourne, Melbourne, Australia.
  32. Ngo, T., Mendis, P., Gupta, A. and Ramsay, J. (2007), "Blast loading and blast effects on structures-an overview", Electron. J. Struct. Eng., 7(S1), 76-91.
  33. Nurick, G. and Shave, G. (1996), "The deformation and rupture of blast loaded square plates", Int. J. Impact Eng., 18, 99-116. https://doi.org/10.1016/0734-743X(95)00018-2
  34. Olson, M., Nurick, G. and Fagnan, J. (1993), "Deformation and rupture of blast loaded square plates-predictions and experiments", Int. J. Impact Eng., 13(2), 279-291. https://doi.org/10.1016/0734-743X(93)90097-Q
  35. Oswald, C. and Marchand, K. (1994), Facility and Component Explosive Damage Assessment Program (FACEDAP): Theory manual, Southwest Research Institute for the Department of the Army; Omaha, USA.
  36. Parlin, N. J., Davids, W. G., Nagy, E. and Cummins, T. (2014), "Dynamic response of lightweight wood-based flexible wall panels to blast and impulse loading", Constr. Build. Mater., 50, 237-245. https://doi.org/10.1016/j.conbuildmat.2013.09.046.
  37. Riedel, W., Mayrhofer, C., Thoma, K. and Stolz, A. (2010), "Engineering and numerical tools for explosion protection of reinforced concrete", Int. J. Prot. Struct., 1(1), 85-101. https://doi.org/10.1260%2F2041-4196.1.1.85. https://doi.org/10.1260/2041-4196.1.1.85
  38. Saadun, A., Mutalib, A. A., Hamid, R. and Mussa, M. H. (2016), "Behaviour of polypropylene fiber reinforced concrete under dynamic impact load", J. Eng. Sci. Technol., 11(5), 684-693.
  39. Scherbatiuk, K., Rattanawangcharoen, N., Pope, D. and Fowler, J. (2008), "Generation of a pressure-impulse diagram for a temporary soil wall using an analytical rigid-body rotation model", Int. J. Impact Eng., 35(6), 530-539. https://doi.org/10.1016/j.ijimpeng.2007.04.006.
  40. Shen, J., Lu, G., Wang, Z. and Zhao, L. (2010), "Experiments on curved sandwich panels under blast loading", Int. J. Impact Eng., 37(9), 960-970. https://doi.org/10.1016/j.ijimpeng.2010.03.002.
  41. Shi, Y., Hao, H. and Li, Z.-X. (2008), "Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads", Int. J. Impact Eng., 35(11), 1213-1227. https://doi.org/10.1016/j.ijimpeng.2007.09.001.
  42. Shi, Y., Li, Z.-X. and Hao, H. (2009), "Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns", Struct. Eng. Mech., 32(2), 251-267. http://dx.doi.org/10.12989/sem.2009.32.2.251.
  43. Shi, Y. and Stewart, M. G. (2015), "Spatial reliability analysis of explosive blast load damage to reinforced concrete columns", Struct. Saf., 53, 13-25. https://doi.org/10.1016/j.strusafe.2014.07.003.
  44. Shope, R. (2007), "Comparisons of an alternative pressureimpulse (P-I) formulation with experimental and finite element results", The International Symposium on the Effects of Munitions with Structures (ISIEMS), Orlando, USA, November.
  45. Sohn, J. M., Kim, S. J., Seong, D. J., Kim, B. J., Ha, Y. C., Seo, J. K. and Paik, J. K. (2014), "Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions", Struct. Eng. Mech., 51(5), 755-771. https://doi.org/10.12989/sem.2014.51.5.755.
  46. Syed, Z. I., Mendis, P., Lam, N. and Ngo, T. (2006), "Concrete damage assessment for blast load using pressure-impulse diagrams", Proceedings of Annual Technical Conference of the Australian Earthquake Engineering Society, Canberra, Australia, November.
  47. Teeling-Smith, R. and Nurick, G. (1991), "The deformation and tearing of thin circular plates subjected to impulsive loads", Int. J. Impact Eng., 11(1), 77-91. https://doi.org/10.1016/0734-743X(91)90032-B.
  48. UFC-3-340-02 (2008), Structures to resist the effects of accidental explosions, US Army Corps of Engineers, Naval Facilities Engineering Command; Washington DC, USA.
  49. Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.
  50. Xia, Y., Wu, C., Zhang, F., Li, Z.-X. and Bennett, T. (2014), "Numerical analysis of foam-protected RC members under blast loads", Int. J. Prot. Struct., 5(4), 367-390. https://doi.org/10.1260%2F2041-4196.5.4.367. https://doi.org/10.1260/2041-4196.5.4.367
  51. Yonten, K., Manzari, M. T., Eskandarian, A. and Marzougui, D. (2002), "An evaluation of constitutive models of concrete in LSDyna finite element code", 15th ASCE Engineering Mechanics Conference, New York, USA, June.
  52. Yu, R., Chen, L., Fang, Q., Yan, H. and Chen, G. (2019), "Generation of pressure-impulse diagrams for failure modes of RC columns subjected to blast loads", Eng. Failure Anal., 100, 520-535. https://doi.org/10.1016/j.engfailanal.2019.02.001.