DOI QR코드

DOI QR Code

Effects of α-tocopherol on hemolysis and oxidative stress markers on red blood cells in β-thalassemia major

  • Sovira, Nora (Division of Pediatric Emergency & Intensive Care, Department of Pediatrics, Faculty of Medicine, University of Syiah Kualal/Dr. Zainoel Abidin Hospital) ;
  • Lubis, Munar (Division of Pediatric Emergency & Intensive Care, Department of Pediatrics, Faculty of Medicine, University of Sumatera Utara/University of Sumatera Utara Hospital) ;
  • Wahidiyat, Pustika Amalia (Division of Hematology Oncology, Department of Pediatrics, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital) ;
  • Suyatna, Franciscus D. (Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital) ;
  • Gatot, Djajadiman (Division of Hematology Oncology, Department of Pediatrics, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital) ;
  • Bardosono, Saptawati (Department of Nutrition, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital) ;
  • Sadikin, Mohammad (Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Indonesia/Dr. Cipto Mangunkusumo Hospital)
  • Received : 2019.05.20
  • Accepted : 2020.02.18
  • Published : 2020.08.15

Abstract

Background: The accumulation of unpaired α-globin chains in patients with β-thalassemia major may clinically create ineffective erythropoiesis, hemolysis, and chronic anemia. Multiple blood transfusions and iron overload cause cellular oxidative damage. However, α-tocopherol, an antioxidant, is a potent scavenger of lipid radicals in the membranes of red blood cells (RBCs) of patients with β-thalassemia major. Purpose: To evaluate the effects of α-tocopherol on hemolysis and oxidative stress markers on the RBC membranes of patients with β-thalassemia major. Methods: Forty subjects included in this randomized controlled trial were allocated to the placebo and α-tocopherol groups. Doses of α-tocopherol were based on Institute of Medicine recommendations: 4-8 years old, 200 mg/day; 9-13 years old, 400 mg/day; 14-18 years old, 600 mg/day. Hemolysis, oxidative stress, and antioxidant variables were evaluated before and after 4-week α-tocopherol or placebo treatment, performed before blood transfusions. Results: Significant enhancements in plasma haptoglobin were noted in the α-tocopherol group (3.01 mg/dL; range, 0.60-42.42 mg/dL; P=0.021). However, there was no significant intergroup difference in osmotic fragility test results; hemopexin, malondialdehyde, reduced glutathione (GSH), or oxidized glutathione (GSSG) levels; or GSH/GSSG ratio. Conclusion: Use of α-tocopherol could indirectly improve hemolysis and haptoglobin levels. However, it played no significant role in oxidative stress or as an endogen antioxidant marker in β-thalassemia major.

Keywords

References

  1. Fibach E, Rachmilewitz EA. Pathophysiology and treatment of patients with beta-thalassemia: an update. F1000Res 2017;6:2156. https://doi.org/10.12688/f1000research.12688.1
  2. Kwiatkowski JL. Hemoglobinopathies. In: Lanzkowsky P, Lipton JM, Fish JD, editors. Lanzkowskys's manual of pediatric hematology and oncology. 6th ed. London: Elsevier, 2016:166-96.
  3. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in ${\beta}$-thalassaemia and sickle cell disease. Redox Biol 2015;6:226-39. https://doi.org/10.1016/j.redox.2015.07.018
  4. Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 2015;6:187.
  5. Schaer CA, Deuel JW, Bittermann AG, Rubio IG, Schoedon G, Spahn DR, et al. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage. Cell Death Differ 2013;20:1569-79. https://doi.org/10.1038/cdd.2013.113
  6. Kormoczi GF, Saemann MD, Buchta C, Peck-Radosavljevic M, Mayr WR, Schwartz DW, et al. Influence of clinical factors on the haemolysis marker haptoglobin. Eur J Clin Invest 2006;36:202-9. https://doi.org/10.1111/j.1365-2362.2006.01617.x
  7. Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol 2014;5:415.
  8. Chow J, Phelan L, Bain BJ. Evaluation of single-tube osmotic fragility as a screening test for thalassemia. Am J Hematol 2005;79:198-201. https://doi.org/10.1002/ajh.20387
  9. Mahjoub S, Tamadoni A, Zanjanchi NM, Moghadamnia AA. The effects of beta-carotene and vitamin E on erythrocytes lipid peroxidation in betathalassemia patients. J Res Med SCI 2007;12:301-7.
  10. Kalpravidh RW, Tangjaidee T, Hatairaktham S, Charoensakdi R, Panichkul N, Siritanaratkul N, et al. Glutathione redox system in ${\beta}$-thalassemia/Hb E patients. ScientificWorldJournal 2013;2013:543973.
  11. Lawson M, Jomova K, Poprac P, Kuca K, Musilek K, Valko M. Free radicals and antioxidants in human disease. In: Al-Gubory KH, Laher I, editors. Nutritional antioxidant therapies: treatment and perspectives. Basel: Springer International, 2017:283-305.
  12. Srichairatanakool S, Fucharoen S. Antioxidants as complementary medication in thalassemia. In: Atroshi F, editor. Pharmacology and nutritional intervention in the treatment of disease. London: InTech, 2014:119-58.
  13. Attia MM, Sayed AM, Ibrahim FA, Mohammed AS, El-Alfy MS. Effects of antioxidant vitamins on some hemoglobin properties and erythrocytes in homozygous beta-thalassemia. Romanian J Biophys 2011;21:116.
  14. Angastinotis M. Lifestyle and quality of life. In: Capellini MD, Porter J, Taher A, Viprakasit V, editors. Guidelines for management of transfusion dependent thalassemia (TDT). 3rd ed. Cyprus: Thalassemia International Foundation, 2014:224-35.
  15. Vichinsky E, Levine L, Bhatia S, Bojanowski J, Coates T. Standards of care guidelines for thalassemia. Oakland: Children's Hospital and Research Centre Oakland, 2012:1-14.
  16. Amelia N, Amalia P, Windiastuti E, Lubis B. Thalassemia. In: Pudjiadi AP, Hegar B, Handryastuti S, Idris NS, Gandaputra EP, Harmoniati ED, editors. Pedoman pelayan medis. Jakarta: Ikatan Dokter Anak Indonesia, 2009:299-302.
  17. Ragab SM, Safan MA, Badr EA. Study of serum haptoglobin level and its relation to erythropoietic activity in Beta thalassemia children. Mediterr J Hematol Infect Dis 2015;7:e2015019. https://doi.org/10.4084/mjhid.2015.019
  18. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 2005;293:1653-62. https://doi.org/10.1001/jama.293.13.1653
  19. Cutillo S, Meloni T. Serum concentrations of haptoglobin and hemopexin in favism and thalassemia. Acta Haematol 1974;52:65-9. https://doi.org/10.1159/000208222
  20. Thomsen JH, Etzerodt A, Svendsen P, Moestrup SK. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging. Oxid Med Cell Longev 2013;2013:523652.
  21. Freisleben SK, Hidayat J, Freisleben HJ, Poertadji S, Kurniawan B, Bo NP, et al. Plasma lipid pattern and red cell membrane structure in ${\beta}$-thalassemia patients in Jakarta. Med J Indones 2011;20:178-84.
  22. Ghone RA, Kumbar KM, Suryakar AN, Katkam RV, Joshi NG. Oxidative stress and disturbance in antioxidant balance in beta thalassemia major. Indian J Clin Biochem 2008;23:337-40. https://doi.org/10.1007/s12291-008-0074-7
  23. Zhong S, Yin H. Lipid peroxidation: role of vitamin E. In: Niki E, editor. Chemistry and nutritional benefits. Cambridge: The Royal Society of Chemistry, 2019:118-133.
  24. Giardini O, Cantani A, Donfrancesco A, Martino F, Mannarino O, D'Eufemia P, et al. Biochemical and clinical effects of vitamin E administration in homozygous beta-thalassemia. Acta Vitaminol Enzymol 1985;7:55-60.
  25. Laksmitawati DR, Handayani S, Udyaningsih-Freisleben SK, Kurniati V, Adhiyanto C, Hidayat J, et al. Iron status and oxidative stress in betathalassemia patients in Jakarta. Biofactors 2003;19:53-62. https://doi.org/10.1002/biof.5520190107
  26. Bhagat SS, Sarkar PD, Suryakar AN, Padalkar RK, Karni AC, Ghone RA, et al. A study on the biomarkers of oxidative stress: the effects of oral therapeutic supplementation on the iron concentration and the product of lipid peroxidation in beta thalassemia major. J Clin Diagn Res 2012;6:1144-7.
  27. Das N, Das Chowdhury T, Chattopadhyay A, Datta AG. Attenuation of oxidative stress-induced changes in thalassemic erythrocytes by vitamin E. Pol J Pharmacol 2004;56:85-96.
  28. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr 2004;134:489-92. https://doi.org/10.1093/jn/134.3.489
  29. Ribas V, Garcia-Ruiz C, Fernandez-Checa JC. Glutathione and mitochondria. Front Pharmacol 2014;5:151. https://doi.org/10.3389/fphar.2014.00151
  30. Mahdi EA. Relationship between oxidative stress and antioxidant status in beta thalassemia major patients. Acta Chim Pharm Indica 2014;4:137-45.
  31. Qaiser S, Hoque MZ, Iqbal M, Mudin DK. Evaluation of antioxidant status in beta thalassemia major patients in Sabah, Malaysian Borneo. Biores Commun 2015;1:45-7.
  32. Sherief LM, Abd El-Salam SM, Kamal NM, El Safy O, Almalky MA, Azab SF, et al. Nutritional biomarkers in children and adolescents with Beta-thalassemia-major: an Egyptian center experience. Biomed Res Int 2014;2014:261761.
  33. Westergren T, Kalikstad B. Dosage and formulation issues: oral vitamin E therapy in children. Eur J Clin Pharmacol 2010;66:109-18. https://doi.org/10.1007/s00228-009-0729-1