DOI QR코드

DOI QR Code

A Study on the Difference in Ballasting Time Arising from the Installation of an Ultraviolet Ballast Water Management System on Existing Ships

현존선에 자외선 평형수처리장치 설치로 인한 평형수 처리시간 변화에 관한 연구

  • Seo, Kil-Cheon (Marine & Ocean Equipment Team, Korean Register) ;
  • Lee, Kyoung-Woo (Team Solution Co., Ltd.) ;
  • Rho, Beom-Seok (Korea Institute of Maritime and Fisheries Technology) ;
  • Cho, Ik-Soon (Division of Global Maritime Studies, Korea Maritime & Ocean University) ;
  • Lee, Won-Ju (Division of Marine Engineering, Korea Maritime & Ocean University) ;
  • Pham, Van Chien (Graduate School, Korea Maritime & Ocean University) ;
  • Choi, Jae-Hyuk (Division of Marine System Engineering, Korea Maritime & Ocean University)
  • Received : 2020.06.15
  • Accepted : 2020.08.28
  • Published : 2020.08.31

Abstract

This study quantitatively investigated the increase in ballasting time through numerical calculations when an ultraviolet (UV) ballast water management system (BWMS) is installed on an existing vessel. The calculation results indicate that the ballasting time of a gas carrier having 55,000 dead weight tonnage was 2.152 hours without installation of the UV BWMS and implementation of a flow control function. Ballasting time increased by 14.2% after installing the UV BWMS, and it increased by 20.4% with both its installation and implementation of a flow control function. If actual conditions are taken into account, ballasting time after installing the UV BWMS is estimated to increase by at least 30% compared with current ballasting time. Therefore, when concerned parties select a UV type BWMS, it is advisable for them to minimize ship operation losses from an increase in ballasting time by considering the capacity of the actual ballast pumps on board and the flow energy loss of the UV BWMS. Additionally, it is recommended that a BWMS with larger capacity, larger pipes, and pipes with inside coatings be used to minimize the increase in ballasting time after installation of the BWMS.

본 연구는 기존 선박에 자외선 (UV) 평형수처리장치(BWMS)를 설치 한 경우, 수치 계산을 통해 평형수 처리시간의 증가를 정량적으로 조사하였다. 계산 결과 배수량 55,000톤 가스 운반선의 평형수 처리시간은 UV BWMS 미설치 및 유량 제어 기능 없이 2.152 시간이었다. 평형수 처리시간은 UV BWMS 설치 후 14.2 % 증가했으며, 유량 제어 기능까지 고려 시 20.4 % 증가했습니다. 실제 조건들을 고려하면 UV BWMS 설치 후 평형수 처리시간은 기존 평형수처리시간 대비 최소 30 % 정도 증가할 것으로 예상됩니다. 따라서 업계 관계자는 평형수 처리시간 증가로 인한 선박 운영 손실을 최소화하기 위하여 UV BWMS 선정시 본선의 실제 평형수펌프 용량과 UV BWMS의 유동 에너지 손실을 충분히 고려하는 것이 좋습니다. 또한 BWMS 설치 후 평형수 처리시간 증가를 최소화하기 위해서는 더 큰 용량의 BWMS, 더 큰 파이프 및 내부 코팅이 있는 파이프 등의 사용을 고려할 수 있습니다.

Keywords

References

  1. Akram, A. C., S. Noman, R. Moniri Javid, J. P. Gizicki, E. A. Reed, S. B. Singh, A. S. Basu, F. Banno, M. Fujimoto, and J. L. Ram(2015), Development of an automated ballast water treatment verification system utilizing fluorescein diacetate hydrolysis as a measure of treatment efficacy, Water Research, 70, pp. 404-413. https://doi.org/10.1016/j.watres.2014.12.009
  2. Bakalar, G.(2016), Comparisons of interdisciplinary ballast water treatment systems and operational experiences from ships,, 5, pp. 1-12.
  3. Campara, L., V. Francic, V. Maglic, and N. Hasanspahic (2019), Overview and Comparison of the IMO and the US Maritime Administration Ballast Water Management Regulations, J. Marine Sci. Eng., 7, p. 283. https://doi.org/10.3390/jmse7090283
  4. Casey, T. J.(1992), Water and Wastewater Engineering Hydraulics, Oxford University Press: New York, United States, pp. 35-36.
  5. David, M., S. Gollasch, and L. Penko(2018), Identification of ballast water discharge profiles of a port to enable effective ballast water management and environmental studies, J. Sea Res., 133, pp. 60-72. https://doi.org/10.1016/j.seares.2017.03.001
  6. Eisnor, J. D. and G. A. Gagnon(2004), Impact of secondary disinfection on corrosion in a model water distribution system, Journal of Water Supply: Research and Technology-AQUA, 53(7), pp. 441-452 https://doi.org/10.2166/aqua.2004.0035
  7. Endresen, O., H. L. Behrens, S. Brynestad, A. B. Andersen, and R. Skjong(2004), Challenges in global ballast water management, Mar. Pollut. Bull., 48, pp. 615-623. https://doi.org/10.1016/j.marpolbul.2004.01.016
  8. First, M. R. and L. A. Drake(2014), Life after treatment: detecting living microorganisms following exposure to UV light and chlorine dioxide, J. Appl. Phycol, 26(1), pp. 227-235. https://doi.org/10.1007/s10811-013-0049-9
  9. Fried, E. and I. E. Idelchik(1989), Flow Resistance: A Design Guide for Engineers, pp. 7-9.
  10. Gollasc, S., M. David, M. Voigt, E. Dragsund, C. Hewitt, and Y. Fukuyo(2007), Critical review of the IMO international convention on the management of ships' ballast water and sediments, Harmful Algae 2007, 6(4), pp. 585-600. https://doi.org/10.1016/j.hal.2006.12.009
  11. Hasanspahi'c, N. and D. Zec(2017), Preview of Ballast Water Treatment System Market Status, Nase More, 64, pp. 120-125.
  12. IMO(2004), International Maritime Organization, Guidelines and Guidance Documents Related to the Implementation of the International Convention for the Control and Management of Ships' Ballast Water Sediments.
  13. IMO(2016), International Maritime Organization, Guidelines for Approval of Ballast Water Management Systems (G8).
  14. IMO(2019), International Maritime Organization, Code for Approval of Ballast Water Management Systems (BWMS Code).
  15. ITTC(2011), International Towing Tank Conference, Fresh water and seawater properties (Rev.02), p. 8.
  16. NFPA(2013), National Fire Protection Association, NFPA Code 13: Standard for the Installation of Sprinkler Systems, 2013 ed., p. 237.
  17. Olsen, R. O., F. Hoffmann, O. Hess-Erga, A. Larsen, G. Thuestad, and I. A. Hoell(2016), Ultraviolet radiation as a ballast water treatment strategy: Inactivation of phytoplankton measured with flow cytometry, Marine Pollution Bulletin, 103, pp. 270-275. https://doi.org/10.1016/j.marpolbul.2015.12.008
  18. Park, O.Y., J. Mun, and G. Y. Gong(2017), Development of the Electrolysis Ballast Water Treatment System and Test, J. Navigation and Port Research, 41(3), pp. 79-86. https://doi.org/10.5394/KINPR.2017.41.3.79
  19. Song, Y., K. Dang, H. Chi, and D. Guan(2014), Corrosion of marine carbon steel by electrochemically treated ballast water, J. Marine Eng. Tech., 8(1), pp. 49-55. https://doi.org/10.1080/20464177.2009.11020218
  20. Steidel, R. F., V. Castelli, J.W. Murdock, and L. Meirovitch(1996), Sec.3 Mechanics of Solids and Fluids in Marks' Standard Handbook for Mechanical Engineers, 10th ed., Eugene A. Avallone, Theodore Baumeister III, McGraw-Hill: New York, United States, pp. 50-51.
  21. Sutherland, T. F., C.D. Levings, C. C. Elliott, and W.W. Hesse(2001), Effect of a ballast water treatment system on survivorship of natural populations of marine plankton, Marine Ecology Progress Series, 210, pp. 139-148. https://doi.org/10.3354/meps210139
  22. Tsolaki, E. and E. Diamadopoulos(2010), Technologies for ballast water treatment: A review, J. Chem. Technol. Biotechnol., 85, pp. 19-32. https://doi.org/10.1002/jctb.2276