DOI QR코드

DOI QR Code

2차원 축대칭 전산해석을 이용한 초음속 로켓 제트 음향 해석

Acoustic Analysis of Exhaust Supersonic Jet From a Rocket Motor Using 2-D Axis-symmetric Computational Analysis

  • 투고 : 2020.04.22
  • 심사 : 2020.08.27
  • 발행 : 2020.09.01

초록

본 연구는 초음속 로켓 제트 후류 전산음향 해석에 소요되는 해석 시간을 줄이기 위해 수행되었다. 해석 시간을 줄이기 위한 방안으로 초음속 제트 후류를 2차원 축대칭 문제로 가정하고 전산음향 해석을 수행하였다. 전산음향 해석 결과, 음향하중 계측 결과와 유사한 결과를 보였다. 본 연구를 통해 2차원 축대칭 전산해석을 이용하여 초음속 로켓 제트 후류의 음향하중 예측이 가능함을 확인할 수 있었다.

This study was conducted to reduce the computation time required for the computational acoustic analysis of the supersonic rocket jet plume. In order to reduce the computation time, computational acoustic analysis was performed assuming that the supersonic jet plume is a two-dimensional axis-symmetric problem. The results of computational acoustic analysis showed similar results to the acoustic load measurement results. Through this study, it was confirmed that the acoustic load prediction of the supersonic rocket jet plume can be predicted using a two-dimensional axis-symmetric computational analysis.

키워드

참고문헌

  1. Eldred, K. M. and Jones, G. W., Jr., "Acoustic load generated by the propulsion system," NASA SP-8072, 1971, pp. 1-49.
  2. Tam, C. K. W., "Computational aeroacoustics: Issues and methods," AIAA Journal, Vol. 33, No. 10, 1995, pp. 1788-1796. https://doi.org/10.2514/3.12728
  3. Tam, C. K. W., "Computational aeroacoustics: An Overview of Computational Challenges and Applications," International Journal of Computational Fluid Dynamics, Vol. 18, No. 6, 2004, pp. 547-567. https://doi.org/10.1080/10618560410001673551
  4. Tam, C. K. W., Computational Aeroacoustics, Cambridge, 2012, pp. 21-26.
  5. Orszag, S. A., "Analytical theories of turbulence," Journal of Fluid Mechanics, Vol. 41, No. 2, 1970, pp. 363-386. https://doi.org/10.1017/S0022112070000642
  6. Mankbadi, R. R., Shih, S. H., Hixon, D. R. and Povinelli, L. A., "Direct Computation of Jet Noise Produced by Large-Scale Axisymmetric Structures," AIAA Journal of Propulsion and Power, Vol. 15, No. 5, 1999, pp. 207-215.
  7. Spalart, P. R., "Detached-eddy simulation," Annual review of fluid mechanics, Vol. 41, 2009, pp. 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130
  8. Dewan, Y., Golubev, V. V., Lyrintzis, A. S. and Mankdai, R. R., "Detached Eddy simulations of supersonic jets impinging on flat plates," 43rd Fluid Dynamics Conference, 2013.
  9. Tsutsumi, S., Ishii, T., Ui, K. and Tokudome, S., "Assessing Prediction and Reduction Technique of Lift-off Acoustics Using Epsilon Flight Data," 53rd AIAA Aerospace Sciences Meeting, 2015, pp. 1-13.
  10. Fukuda, K., Tsutsumi, S., Fujii, K., Ui, K., Ishii, T., Oinuma, H., Kazawa, J. and Minesugi, K., "Acoustic measurement and prediction of solid rockets in static firing tests," 15th AIAA/CEAS Aeroacoustics Conference, 2009, pp. 1-13.
  11. Kurabayashi, H., Sato, A., Yamashita, K., Nakayama, H., Hori, K., Honda, M. and Hasegawa, K., "Ultrasonic Measurements of Burning Rates in Full-size Rocket Motors," Progress in Propulsion Physics 2, 2011, pp. 135-148.
  12. Tsutsumi, S., Ishii, T., Ui, K., Tokudome, S. and Wada, K., "Study on Acoustic Prediction and Reduction of Epsilon Launch Vehicle at Liftoff," Journal of Spacecraft and Rockets, Vol. 52, No. 2, 2015, pp. 350-361. https://doi.org/10.2514/1.A33010
  13. Van Leer, B., Flux-Vector Splitting for the Euler Equation, Springer Berlin Heidelberg, 1997, pp. 80-89.
  14. Chakravarthy, S., Harten, A. and Osher, S., "Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy," 24th Aerospace Sciences Meeting, 1986, p. 339.
  15. Sutherland, W., "The Viscosity of Gases and Molecular Force," Philosophical Magazine, S. 5, Vol. 36, 1893, pp. 507-531. https://doi.org/10.1080/14786449308620508