DOI QR코드

DOI QR Code

W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성

Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property

  • 오규상 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Oh, Gyu-Sang (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2020.06.16
  • 심사 : 2020.08.18
  • 발행 : 2020.08.28

초록

W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

키워드

참고문헌

  1. M. Schaepkens, R. C. M. Bosch, T. E. F. M. Standaert, G. S. Oehrlein and J. M. Cook: J. Vac. Sci. Technol. A, 16 (1998) 2099.
  2. Y. Kobayashi: In Proc. 37th Seminar on High-Temperature Ceramics, 19 (2005) 1.
  3. N. Ito, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu and Y. Kitayama: Jpn. J. Appl. Phys., 47 (2008) 3630. https://doi.org/10.1143/JJAP.47.3630
  4. G. S. May and C. J. Spanos: Fundamentals of Semiconductor Manufacturing and Process Control, John Wiley & Sons, (2006).
  5. A. J. van Roosmalen, J. A. G. Baggerman and S. J. H. Brader: Dry Etching for VLSI, Springer Science & Business Media, (2013).
  6. M. R. Jang. Y. K. Paek and S. M. Lee: J. Korean Ceram. Soc., 49 (2012) 328. https://doi.org/10.4191/kcers.2012.49.4.328
  7. J. H. Kim, I. H. Oh, J. H. Lee, S. K. Hong and H. K. Park: J. Korean Powder Metall. Inst., 26 (2019) 132. https://doi.org/10.4150/KPMI.2019.26.2.132
  8. M. Schaepkens, T. E. F. M Standaert, N. R. Ruger, P. G. M. Sebel and G. S. Oehrlein: J. Vac. Sci. Technol., 17 (1999) 26. https://doi.org/10.1116/1.582108
  9. H. Taimatsu, S. Sygiyama and Y. Kodaira: Mater. Trans., 49 (2008) 1256. https://doi.org/10.2320/matertrans.MRA2007304
  10. K. Buss : Ph.D. Thesis, EPFL, (2004).
  11. J. Zhang, G. Zhang, S. Zhao and X. Song: J. Alloys Compd., 479 (2009) 427. https://doi.org/10.1016/j.jallcom.2008.12.151
  12. D. M. Kim, S. Y. Yoon, K. B. Kim, H. S. Kim, Y. S. Oh and S. M. Lee: J. Korean Ceram. Soc., 45 (2008) 707. https://doi.org/10.4191/KCERS.2008.45.1.707