DOI QR코드

DOI QR Code

A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics

원자층증착법으로 증착된 강유전성 플루오라이트 구조 강유전체 박막의 불순물 효과

  • Lee, Dong Hyun (Department of Materials Science and Engineering, Pusan National University) ;
  • Yang, Kun (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Ju Yong (Department of Materials Science and Engineering, Pusan National University) ;
  • Park, Min Hyuk (Department of Materials Science and Engineering, Pusan National University)
  • 이동현 (부산대학교 재료공학부) ;
  • 양건 (부산대학교 재료공학부) ;
  • 박주용 (부산대학교 재료공학부) ;
  • 박민혁 (부산대학교 재료공학부)
  • Received : 2020.07.04
  • Accepted : 2020.08.24
  • Published : 2020.08.31

Abstract

The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.

Keywords

References

  1. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903. https://doi.org/10.1063/1.3634052
  2. M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Ferroelectricity and Antiferroelectricity of Doped Thin $HfO_2$-Based Films, Adv. Mater. 27 (2015) 1811-1831. https://doi.org/10.1002/adma.201404531
  3. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Thin $Hf_x\;Zr_{1-x}\;O_2$ Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. Adv. Energy Mater., 4 (2014) 1400610. https://doi.org/10.1002/aenm.201400610
  4. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric $Hf_xZr_{1-x}O_2$ films, Nano Energy, 12 (2015) 131-140. https://doi.org/10.1016/j.nanoen.2014.09.025
  5. M. H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gartner, T. Mikolajick, U. Schroeder. Effect of acceptor doping on phase transitions of $HfO_2$ thin films for energy-related applications. Nano Energy, 36 (2017) 381-389. https://doi.org/10.1016/j.nanoen.2017.04.052
  6. K. D. Kim, Y. H. Lee, T. Gwon, Y.J. Kim, H.J. Kim, T. Moon, S.D. Hyun, H.W. Park, M.H. Park, C.S. Hwang. Scale-up and optimization of $HfO_2-ZrO_2$ solid solution thin films for the electrostatic supercapacitors. Nano Energy, 39 (2017) 390-399. https://doi.org/10.1016/j.nanoen.2017.07.017
  7. M. H. Park, C. S. Hwang. Fluorite-structure antiferroelectrics, Rep. Prog. Phys. 82 (2019) 124502. https://doi.org/10.1088/1361-6633/ab49d6
  8. M. Hoffmann, U. Schroeder, C. Kunneth, A. Kersch, S. Starschich, U. Bottger, T. Mikolajick. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy, 18 (2015) 154-164. https://doi.org/10.1016/j.nanoen.2015.10.005
  9. M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, C. S. Hwang. Review and perspective on ferroelectric $HfO_2$-based thin films for memory applications. MRS Commun. 8 (2018) 795-808. https://doi.org/10.1557/mrc.2018.175
  10. Mikolajick, Thomas, S. Slesazeck, M. H. Park, U. Schroeder. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43 (2018) 340-346. https://doi.org/10.1557/mrs.2018.92
  11. C. S. Hwang. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1 (2015) 1400056. https://doi.org/10.1002/aelm.201400056
  12. Shimizu, Takao, T. Yokouchi, T. Shiraishi, T. Oikawa, PS Krishnan, H. Funakubo. Study on the effect of heat treatment conditions on metalorganic-chemical-vapor-deposi ted ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ thin film on Ir electrode. Jpn. J. Appl. Phys. 53 (2014) 09PA04. https://doi.org/10.7567/JJAP.53.09PA04
  13. L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi. Kinetic pathway of the ferroelectric phase formation in doped $HfO_2$ films. Journal of Applied Physics 122 (2017) 124104. https://doi.org/10.1063/1.5003918
  14. S. Starschich, U. Boettger. An extensive study of the influence of dopants on the ferroelectric properties of $HfO_2$. Journal of Materials Chemistry C 5 (2017) 333-338. https://doi.org/10.1039/C6TC04807B
  15. Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi. A rhombohedral ferroelectric phase in epitaxially strained $Hf_{0.5}Zr_{0.5}O_2$ thin films. Nat. Mater. 17 (2018) 1095-1100. https://doi.org/10.1038/s41563-018-0196-0
  16. Materlik, R., C. Kunneth, A. Kersch. The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model. J. Appl. Phys. 117 (2015) 134109. https://doi.org/10.1063/1.4916707
  17. R. Batra, T. D. Huan, G. A. Rossetti, Jr., and R. Ramprasad, Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration, Chem. Mater. 29 (21), (2017), 9102-9109. https://doi.org/10.1021/acs.chemmater.7b02835
  18. M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides, Adv. Electron. Mater. 5 (3), (2019), 1800522. https://doi.org/10.1002/aelm.201800522
  19. Y. H. Lee, S. D. Hyun, H. J. Kim, J. S. Kim, C. Yoo, T. Moon, K. D. Kim, H. W. Park, Y. B. Lee, B. S. Kim, J. Roh, M. H. Park, C. S. Hwang, Nucleation-Limited Ferroelectric Orthorhombic Phase Formation in $Hf_{0.5}Zr_{0.5}O_2$ Thin Films, Adv. Electron. Mater. 5 (2), (2019), 1800436. https://doi.org/10.1002/aelm.201800436
  20. M. H. Park, C. C. Chung, T. Schenk, C. Richter, K. Opsomer, C. Detavernier, C. Adelmann, J. L. Jones, T. Mikolajick, U. Schroeder, Effect of Annealing Ferroelectric $HfO_2$ Thin Films: In Situ, High Temperature X-Ray Diffraction, Adv. Electron. Mater. 4 (7), (2018), 1800091. https://doi.org/10.1002/aelm.201800091
  21. M. H. Park, Y. H. Lee, C. S. Hwang, Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory, Nanoscale 11 (41), (2019), 19477-19487. https://doi.org/10.1039/C9NR05768D
  22. M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, T. Mikolajick, U. Schroeder, C. S. Hwang, Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films, Nanoscale 10 (2), (2018), 716-725. https://doi.org/10.1039/C7NR06342C
  23. M. H. Park, Y. H. Lee, H. J. Kim, T. Schenk, W. Lee, K. D. Kim, F. P. G. Fengler, T. Mikolajick, U. Schroeder, C. S. Hwang, Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment, Nanoscale 9 (28), (2017), 9973-9986. https://doi.org/10.1039/C7NR02121F
  24. E. Cho, B. Lee, C.-K. Lee, S. Han, S. H. Jeon, B. H . Park a nd Y.-S. Kim, Appl. Phys. Lett., 2008, 92, 233118. https://doi.org/10.1063/1.2943322
  25. Kunneth, C., Materlik, R., Falkowski, M. & Kersch, A. Impact of Four-Valent Doping on the Crystallographic Phase Formation for Ferroelectric $HfO_2$ from First-Principles: Implications for Ferroelectric Memory and Energy-Related Applications. ACS Appl. Nano Mater. 1 (2018) 254-264. https://doi.org/10.1021/acsanm.7b00124
  26. Zhao, X., Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B - Condens. Matter Mater. Phys. 65 (2002) 1-4.
  27. H. S. Jung, S. H. Jeon, H. K. Kim, I. H. Yu, S. Y. Lee, J. Lee1, Y. J. Chung, D. Y. Cho, N. I. Lee, T. J. Park, J. H. Choi, S. Han, C. S. Hwang, The Impact of Carbon Concentration on the Crystalline Phase and Dielectric Constant of Atomic Layer Deposited $HfO_2$ Films on Ge Substrate. ECS J. Solid State Sci. Technol. 1 (2012) N33-N37. https://doi.org/10.1149/2.020202jss
  28. K. D. Kim, Y. H. Lee, T. h. Gwon, Y. J. Kim, H. J. Kim, T. h. Moon, S. D. Hyun, H. W. Park, M. H. Park, C. S. Hwang, Scale-up and optimization of $HfO_2-ZrO_2$ solid solution thin films for the electrostatic supercapacitors. Nano Energy 39 (2017) 390-399. https://doi.org/10.1016/j.nanoen.2017.07.017
  29. D. Necas, P. Klapetek, Gwyddion: An opensource software for SPM data analysis. Cent. Eur. J. Phys. 10 (2012) 181-188.
  30. D. Y. Cho, H. S. Jung, I. H. Yu, J. H. Yoon, H. K. Kim, S. Y. Lee, S. H. Jeon, S. Han, J. H. Kim, T. J. Park, B. G. Park, C. S. Hwang, Stabilization of tetragonal $HfO_2$ under low active oxygen source environment in atomic layer deposition. Chem. Mater. 24 (2012) 3534-3543. https://doi.org/10.1021/cm3001199
  31. U. Schroeder, M. Materano, T. Mittmann, P. D. Lomenzo, T. Mikolajick, A. Toriumi. Recent progress for obtaining the ferroelectric phase in hafnium oxide-based films: Impact of oxygen and zirconium. Jpn. J. Appl. Phys. (2019). 58.
  32. K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon, C. S. Hwang, Ferroelectricity in undoped-$HfO_2$ thin films induced by deposition temperature control during atomic layer deposition, J. Mater. Chem. C, 4 (2016) 6864-6872. https://doi.org/10.1039/C6TC02003H
  33. Aggarwal, S., S. R. Perusse, C. W. Tipton, R. Ramesh, H. D. Drew, T. Venkatesan, D. B. Romero, Vyacheslav B. Podobedov, Alfons Weber. Effect of hydrogen on Pb(Zr,Ti)$O_3$-based ferroelectric capacitors. Appl. Phys. lett. 73 (1998) 1973-1975. https://doi.org/10.1063/1.122339
  34. Shimamoto, Y., K. Kushida-Abdelghafar, H. Miki, Y. Fujisaki. $H_2$ damage of ferroelectric Pb (Zr, Ti) $O_3$ thin-film capacitors-The role of catalytic and adsorptive activity of the top electrode. Appl. Phys. Lett. 70 (1997) 3096-3097. https://doi.org/10.1063/1.119102
  35. Kushida-Abdelghafar, Keiko, Hiroshi Miki, Kazuyoshi Torii, Yoshihisa Fujisaki. Electrodeinduced degradation of $Pb(Zr_{x}Ti_{1-x})O_3$ (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors, Appl. Phys. Lett. 69 (1996) 3188-3190. https://doi.org/10.1063/1.117956
  36. M. H Park, H. J. Kim, Y. J. Kim, W. K. Lee, T. H. Moon, K. D. Kim, C. S. Hwang. Study on the degradation mechanism of the ferroelectric properties of thin $Hf_{0.5}Zr_{0.5}O_2$ films on TiN and Ir electrodes. Appl. Phys. Lett. 105 (2014) 072902. https://doi.org/10.1063/1.4893376
  37. J. G. Kang, E. C. Lee, K. J. Chang, Y. G. Jin. H-related defect complexes in $HfO_2$: A model for positive fixed charge defects. Appl. Phys. Lett. 84 (2004) 3894-3896. https://doi.org/10.1063/1.1738946
  38. S. Y. Oh, J.H. Song, I. K. Yoo, H. S. Hwang. Improved Endurance of $HfO_2$-based metal-ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing. IEEE Electron Device Letters 40 (2019) 1092-1095. https://doi.org/10.1109/LED.2019.2914700
  39. S. J. Kim, Jaidah Mohan, H. S. J. Kim, J. B. Lee, S. M. Hwang, D. Narayan, J. G. Lee. Effect of hydrogen derived from oxygen source on low-temperature ferroelectric TiN/$Hf_{0.5}Zr_{0.5}O_2$/TiN capacitors. Appl. Phys. Lett. 115 (2019) 182901. https://doi.org/10.1063/1.5126144
  40. M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang. Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric $Hf_{0.5}Zr_{0.5}O_2$ thin films. J. Mater. Chem. C 3 (2015) 6291-6300. https://doi.org/10.1039/C5TC01074H
  41. R. Batra, T. D. Huan, G. A. Rossetti and R. Ramprasad, Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration, Chem. Mater. 29 (2017) 9102-9109. https://doi.org/10.1021/acs.chemmater.7b02835
  42. L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita and A. Toriumi, Ferroelectric phase stabilization of $HfO_2$ by nitrogen doping, Appl. Phys. Express 9 (2016) 091501. https://doi.org/10.7567/APEX.9.091501
  43. L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita and A. Toriumi, Kinetic pathway of the ferroelectric phase formation in doped $HfO_2$ films, J. Appl. Phys. 122 (2017) 124104. https://doi.org/10.1063/1.5003918
  44. W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder and N. Barrett, Physical chemistry of the TiN/$Hf_{0.5}Zr_{0.5}O_2$ interface, J. Appl. Phys. 127 (2020) 064105. https://doi.org/10.1063/1.5128502
  45. Y. Zhou, Y. K. Zhang, Q. Yang, J. Jiang, P. Fan, M. Liao and Y. C. Zhou, The effects of oxygen vacancies on ferroelectric phase transition of $HfO_2$-based thin film from first-principle, Comput. Mater. 167 (2019) 143-150. https://doi.org/10.1016/j.commatsci.2019.05.041
  46. X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang and R.G. Gordon, ALD of Hafnium Oxide Thin Films from Tetrakis (ethylmethylamino) hafnium and Ozone, ECS J. Solid State Sci. Technol. 152 (2005) G213.
  47. X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang and R.G. Gordon, Fluid Imprint and Inertial Switching in Ferroelectric La:$HfO_2$ Capacitors, ACS Appl. Mater. Interfaces 38 (2019) 35115-35121.
  48. J. L. Gavartin, A. L. Shluger, A. S. Foster and G. I. Bersuker, The role of nitrogen-related defects in high-k dielectric oxides: Densityfunctional studies, J. Appl. Phys. 97 (2005) 053704. https://doi.org/10.1063/1.1854210