References
- T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, U. Bottger, Ferroelectricity in hafnium oxide thin films, Appl. Phys. Lett. 99 (2011) 102903. https://doi.org/10.1063/1.3634052
-
M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Ferroelectricity and Antiferroelectricity of Doped Thin
$HfO_2$ -Based Films, Adv. Mater. 27 (2015) 1811-1831. https://doi.org/10.1002/adma.201404531 -
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Thin
$Hf_x\;Zr_{1-x}\;O_2$ Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. Adv. Energy Mater., 4 (2014) 1400610. https://doi.org/10.1002/aenm.201400610 -
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, C. S. Hwang, Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric
$Hf_xZr_{1-x}O_2$ films, Nano Energy, 12 (2015) 131-140. https://doi.org/10.1016/j.nanoen.2014.09.025 -
M. H. Park, T. Schenk, M. Hoffmann, S. Knebel, J. Gartner, T. Mikolajick, U. Schroeder. Effect of acceptor doping on phase transitions of
$HfO_2$ thin films for energy-related applications. Nano Energy, 36 (2017) 381-389. https://doi.org/10.1016/j.nanoen.2017.04.052 -
K. D. Kim, Y. H. Lee, T. Gwon, Y.J. Kim, H.J. Kim, T. Moon, S.D. Hyun, H.W. Park, M.H. Park, C.S. Hwang. Scale-up and optimization of
$HfO_2-ZrO_2$ solid solution thin films for the electrostatic supercapacitors. Nano Energy, 39 (2017) 390-399. https://doi.org/10.1016/j.nanoen.2017.07.017 - M. H. Park, C. S. Hwang. Fluorite-structure antiferroelectrics, Rep. Prog. Phys. 82 (2019) 124502. https://doi.org/10.1088/1361-6633/ab49d6
- M. Hoffmann, U. Schroeder, C. Kunneth, A. Kersch, S. Starschich, U. Bottger, T. Mikolajick. Ferroelectric phase transitions in nanoscale HfO2 films enable giant pyroelectric energy conversion and highly efficient supercapacitors. Nano Energy, 18 (2015) 154-164. https://doi.org/10.1016/j.nanoen.2015.10.005
-
M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, C. S. Hwang. Review and perspective on ferroelectric
$HfO_2$ -based thin films for memory applications. MRS Commun. 8 (2018) 795-808. https://doi.org/10.1557/mrc.2018.175 - Mikolajick, Thomas, S. Slesazeck, M. H. Park, U. Schroeder. Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors. MRS Bull. 43 (2018) 340-346. https://doi.org/10.1557/mrs.2018.92
- C. S. Hwang. Prospective of semiconductor memory devices: from memory system to materials. Adv. Electron. Mater. 1 (2015) 1400056. https://doi.org/10.1002/aelm.201400056
-
Shimizu, Takao, T. Yokouchi, T. Shiraishi, T. Oikawa, PS Krishnan, H. Funakubo. Study on the effect of heat treatment conditions on metalorganic-chemical-vapor-deposi ted ferroelectric
$Hf_{0.5}Zr_{0.5}O_2$ thin film on Ir electrode. Jpn. J. Appl. Phys. 53 (2014) 09PA04. https://doi.org/10.7567/JJAP.53.09PA04 -
L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita, A. Toriumi. Kinetic pathway of the ferroelectric phase formation in doped
$HfO_2$ films. Journal of Applied Physics 122 (2017) 124104. https://doi.org/10.1063/1.5003918 -
S. Starschich, U. Boettger. An extensive study of the influence of dopants on the ferroelectric properties of
$HfO_2$ . Journal of Materials Chemistry C 5 (2017) 333-338. https://doi.org/10.1039/C6TC04807B -
Y. Wei, P. Nukala, M. Salverda, S. Matzen, H. J. Zhao, J. Momand, A. S. Everhardt, G. Agnus, G. R. Blake, P. Lecoeur, B. J. Kooi. A rhombohedral ferroelectric phase in epitaxially strained
$Hf_{0.5}Zr_{0.5}O_2$ thin films. Nat. Mater. 17 (2018) 1095-1100. https://doi.org/10.1038/s41563-018-0196-0 - Materlik, R., C. Kunneth, A. Kersch. The origin of ferroelectricity in Hf1-xZrxO2: A computational investigation and a surface energy model. J. Appl. Phys. 117 (2015) 134109. https://doi.org/10.1063/1.4916707
- R. Batra, T. D. Huan, G. A. Rossetti, Jr., and R. Ramprasad, Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration, Chem. Mater. 29 (21), (2017), 9102-9109. https://doi.org/10.1021/acs.chemmater.7b02835
- M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, Thermodynamic and Kinetic Origins of Ferroelectricity in Fluorite Structure Oxides, Adv. Electron. Mater. 5 (3), (2019), 1800522. https://doi.org/10.1002/aelm.201800522
-
Y. H. Lee, S. D. Hyun, H. J. Kim, J. S. Kim, C. Yoo, T. Moon, K. D. Kim, H. W. Park, Y. B. Lee, B. S. Kim, J. Roh, M. H. Park, C. S. Hwang, Nucleation-Limited Ferroelectric Orthorhombic Phase Formation in
$Hf_{0.5}Zr_{0.5}O_2$ Thin Films, Adv. Electron. Mater. 5 (2), (2019), 1800436. https://doi.org/10.1002/aelm.201800436 -
M. H. Park, C. C. Chung, T. Schenk, C. Richter, K. Opsomer, C. Detavernier, C. Adelmann, J. L. Jones, T. Mikolajick, U. Schroeder, Effect of Annealing Ferroelectric
$HfO_2$ Thin Films: In Situ, High Temperature X-Ray Diffraction, Adv. Electron. Mater. 4 (7), (2018), 1800091. https://doi.org/10.1002/aelm.201800091 - M. H. Park, Y. H. Lee, C. S. Hwang, Understanding ferroelectric phase formation in doped HfO2 thin films based on classical nucleation theory, Nanoscale 11 (41), (2019), 19477-19487. https://doi.org/10.1039/C9NR05768D
- M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, S. D. Hyun, T. Mikolajick, U. Schroeder, C. S. Hwang, Understanding the formation of the metastable ferroelectric phase in hafnia-zirconia solid solution thin films, Nanoscale 10 (2), (2018), 716-725. https://doi.org/10.1039/C7NR06342C
- M. H. Park, Y. H. Lee, H. J. Kim, T. Schenk, W. Lee, K. D. Kim, F. P. G. Fengler, T. Mikolajick, U. Schroeder, C. S. Hwang, Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment, Nanoscale 9 (28), (2017), 9973-9986. https://doi.org/10.1039/C7NR02121F
- E. Cho, B. Lee, C.-K. Lee, S. Han, S. H. Jeon, B. H . Park a nd Y.-S. Kim, Appl. Phys. Lett., 2008, 92, 233118. https://doi.org/10.1063/1.2943322
-
Kunneth, C., Materlik, R., Falkowski, M. & Kersch, A. Impact of Four-Valent Doping on the Crystallographic Phase Formation for Ferroelectric
$HfO_2$ from First-Principles: Implications for Ferroelectric Memory and Energy-Related Applications. ACS Appl. Nano Mater. 1 (2018) 254-264. https://doi.org/10.1021/acsanm.7b00124 - Zhao, X., Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B - Condens. Matter Mater. Phys. 65 (2002) 1-4.
-
H. S. Jung, S. H. Jeon, H. K. Kim, I. H. Yu, S. Y. Lee, J. Lee1, Y. J. Chung, D. Y. Cho, N. I. Lee, T. J. Park, J. H. Choi, S. Han, C. S. Hwang, The Impact of Carbon Concentration on the Crystalline Phase and Dielectric Constant of Atomic Layer Deposited
$HfO_2$ Films on Ge Substrate. ECS J. Solid State Sci. Technol. 1 (2012) N33-N37. https://doi.org/10.1149/2.020202jss -
K. D. Kim, Y. H. Lee, T. h. Gwon, Y. J. Kim, H. J. Kim, T. h. Moon, S. D. Hyun, H. W. Park, M. H. Park, C. S. Hwang, Scale-up and optimization of
$HfO_2-ZrO_2$ solid solution thin films for the electrostatic supercapacitors. Nano Energy 39 (2017) 390-399. https://doi.org/10.1016/j.nanoen.2017.07.017 - D. Necas, P. Klapetek, Gwyddion: An opensource software for SPM data analysis. Cent. Eur. J. Phys. 10 (2012) 181-188.
-
D. Y. Cho, H. S. Jung, I. H. Yu, J. H. Yoon, H. K. Kim, S. Y. Lee, S. H. Jeon, S. Han, J. H. Kim, T. J. Park, B. G. Park, C. S. Hwang, Stabilization of tetragonal
$HfO_2$ under low active oxygen source environment in atomic layer deposition. Chem. Mater. 24 (2012) 3534-3543. https://doi.org/10.1021/cm3001199 - U. Schroeder, M. Materano, T. Mittmann, P. D. Lomenzo, T. Mikolajick, A. Toriumi. Recent progress for obtaining the ferroelectric phase in hafnium oxide-based films: Impact of oxygen and zirconium. Jpn. J. Appl. Phys. (2019). 58.
-
K. D. Kim, M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, Y. H. Lee, S. D. Hyun, T. Gwon, C. S. Hwang, Ferroelectricity in undoped-
$HfO_2$ thin films induced by deposition temperature control during atomic layer deposition, J. Mater. Chem. C, 4 (2016) 6864-6872. https://doi.org/10.1039/C6TC02003H -
Aggarwal, S., S. R. Perusse, C. W. Tipton, R. Ramesh, H. D. Drew, T. Venkatesan, D. B. Romero, Vyacheslav B. Podobedov, Alfons Weber. Effect of hydrogen on Pb(Zr,Ti)
$O_3$ -based ferroelectric capacitors. Appl. Phys. lett. 73 (1998) 1973-1975. https://doi.org/10.1063/1.122339 -
Shimamoto, Y., K. Kushida-Abdelghafar, H. Miki, Y. Fujisaki.
$H_2$ damage of ferroelectric Pb (Zr, Ti)$O_3$ thin-film capacitors-The role of catalytic and adsorptive activity of the top electrode. Appl. Phys. Lett. 70 (1997) 3096-3097. https://doi.org/10.1063/1.119102 -
Kushida-Abdelghafar, Keiko, Hiroshi Miki, Kazuyoshi Torii, Yoshihisa Fujisaki. Electrodeinduced degradation of
$Pb(Zr_{x}Ti_{1-x})O_3$ (PZT) polarization hysteresis characteristics in Pt/PZT/Pt ferroelectric thin-film capacitors, Appl. Phys. Lett. 69 (1996) 3188-3190. https://doi.org/10.1063/1.117956 -
M. H Park, H. J. Kim, Y. J. Kim, W. K. Lee, T. H. Moon, K. D. Kim, C. S. Hwang. Study on the degradation mechanism of the ferroelectric properties of thin
$Hf_{0.5}Zr_{0.5}O_2$ films on TiN and Ir electrodes. Appl. Phys. Lett. 105 (2014) 072902. https://doi.org/10.1063/1.4893376 -
J. G. Kang, E. C. Lee, K. J. Chang, Y. G. Jin. H-related defect complexes in
$HfO_2$ : A model for positive fixed charge defects. Appl. Phys. Lett. 84 (2004) 3894-3896. https://doi.org/10.1063/1.1738946 -
S. Y. Oh, J.H. Song, I. K. Yoo, H. S. Hwang. Improved Endurance of
$HfO_2$ -based metal-ferroelectric-insulator-silicon structure by high-pressure hydrogen annealing. IEEE Electron Device Letters 40 (2019) 1092-1095. https://doi.org/10.1109/LED.2019.2914700 -
S. J. Kim, Jaidah Mohan, H. S. J. Kim, J. B. Lee, S. M. Hwang, D. Narayan, J. G. Lee. Effect of hydrogen derived from oxygen source on low-temperature ferroelectric TiN/
$Hf_{0.5}Zr_{0.5}O_2$ /TiN capacitors. Appl. Phys. Lett. 115 (2019) 182901. https://doi.org/10.1063/1.5126144 -
M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, Y. H. Lee, S. D. Hyun, C. S. Hwang. Study on the internal field and conduction mechanism of atomic layer deposited ferroelectric
$Hf_{0.5}Zr_{0.5}O_2$ thin films. J. Mater. Chem. C 3 (2015) 6291-6300. https://doi.org/10.1039/C5TC01074H - R. Batra, T. D. Huan, G. A. Rossetti and R. Ramprasad, Dopants Promoting Ferroelectricity in Hafnia: Insights from a comprehensive Chemical Space Exploration, Chem. Mater. 29 (2017) 9102-9109. https://doi.org/10.1021/acs.chemmater.7b02835
-
L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita and A. Toriumi, Ferroelectric phase stabilization of
$HfO_2$ by nitrogen doping, Appl. Phys. Express 9 (2016) 091501. https://doi.org/10.7567/APEX.9.091501 -
L. Xu, T. Nishimura, S. Shibayama, T. Yajima, S. Migita and A. Toriumi, Kinetic pathway of the ferroelectric phase formation in doped
$HfO_2$ films, J. Appl. Phys. 122 (2017) 124104. https://doi.org/10.1063/1.5003918 -
W. Hamouda, A. Pancotti, C. Lubin, L. Tortech, C. Richter, T. Mikolajick, U. Schroeder and N. Barrett, Physical chemistry of the TiN/
$Hf_{0.5}Zr_{0.5}O_2$ interface, J. Appl. Phys. 127 (2020) 064105. https://doi.org/10.1063/1.5128502 -
Y. Zhou, Y. K. Zhang, Q. Yang, J. Jiang, P. Fan, M. Liao and Y. C. Zhou, The effects of oxygen vacancies on ferroelectric phase transition of
$HfO_2$ -based thin film from first-principle, Comput. Mater. 167 (2019) 143-150. https://doi.org/10.1016/j.commatsci.2019.05.041 - X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang and R.G. Gordon, ALD of Hafnium Oxide Thin Films from Tetrakis (ethylmethylamino) hafnium and Ozone, ECS J. Solid State Sci. Technol. 152 (2005) G213.
-
X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang and R.G. Gordon, Fluid Imprint and Inertial Switching in Ferroelectric La:
$HfO_2$ Capacitors, ACS Appl. Mater. Interfaces 38 (2019) 35115-35121. - J. L. Gavartin, A. L. Shluger, A. S. Foster and G. I. Bersuker, The role of nitrogen-related defects in high-k dielectric oxides: Densityfunctional studies, J. Appl. Phys. 97 (2005) 053704. https://doi.org/10.1063/1.1854210