DOI QR코드

DOI QR Code

Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation

산소/질소 분리를 위한 다층구조 제올라이트 5A를 함유한 탄소분자체 분리막 제조

  • Li, Wen (School of Chemical and Biomedical Engineering, Nanyang Technological University) ;
  • Chuah, Chong Yang (Singapore Membrane Technology Centre, Nanyang Technological University) ;
  • Bae, Tae-Hyun (School of Chemical and Biomedical Engineering, Nanyang Technological University)
  • 리웬 (싱가포르 난양이공대학교 화학생물공학부) ;
  • 추아총양 (싱가포르 분리막 센터) ;
  • 배태현 (싱가포르 난양이공대학교 화학생물공학부)
  • Received : 2020.07.16
  • Accepted : 2020.08.08
  • Published : 2020.08.31

Abstract

Mixed-matrix carbon molecular sieve membranes containing conventional and hierarchically structured 5A were synthesized for application in oxygen (O2)/nitrogen (N2) separation. In general, incorporating 5A fillers into porous carbon matrices dramatically increased the permeability of the membrane with a marginal decrease in selectivity, resulting in very attractive O2/N2 separation performances. Hierarchical zeolite 5A, which contains both microporous and mesoporous domains, improved the separation performance further, indicating that the mesopores in the zeolite can serve as an additional path for rapid gas diffusion without sacrificing O2/N2 selectivity substantially. This facile strategy successfully and cost-effectively pushed the performance close to the Robeson upper bound. It produced high performance membranes based on Matrimid® 5218 polyimide and zeolite 5A, which are inexpensive commercial products.

다층 구조를 가진 5A 제올라이트를 탄소 분자체 분리막에 첨가한 복합막을 제조하고 질소/산소의 분리 특성을 평가하였다. 제올라이트의 첨가는 선택도에는 미세한 영향을 주지만 투과도를 크게 증가시키는 방법으로 전체적인 탄소막의 질소/산소의 분리 성능을 상승시켰다. 특히 메조포어를 함유한 다층구조의 제올라이트 첨가제는 분리막의 투과도를 보다 효율적으로 상승시켜 아주 우수한 분리 성능에 도달하였다. 이 연구의 결과는 저렴한 탄소막 전구체와 제올라이트 소재를 활용하고도 고성능의 질소/산소 분리막을 손쉽게 제조할 수 있다는 것을 제시한다.

Keywords

References

  1. P. Baskar and A. Senthilkumar, "Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine", Eng. Sci. Technol. Int. J., 19, 438 (2016). https://doi.org/10.1016/j.jestch.2015.08.011
  2. D. Gielen, "$CO_2$ removal in the iron and steel industry", Energy Convers. Manag., 44, 1027 (2003). https://doi.org/10.1016/S0196-8904(02)00111-5
  3. R. Chen and W. Yeun, "Review of the high-temperature oxidation of iron and carbon steels in air or oxygen", Oxid. Met., 59, 433 (2003). https://doi.org/10.1023/A:1023685905159
  4. M. S. Rahman and C. O. Perera, "Drying and food preservation", In Handbook of Food Preservation, p. 173, Marcel Dekker, New York (1999).
  5. R. Cornelissen and G. Hirs, "Exergy analysis of cryogenic air separation", Energy Convers. Manag., 39, 1821 (1998). https://doi.org/10.1016/S0196-8904(98)00062-4
  6. Y. Zhu, X. Liu, and Z. Zhou, "Optimization of cryogenic air separation distillation columns", In Proceedings of 2006 6th World Congress on Intelligent Control and Automation, p. 7702 (2006).
  7. A. Smith and J. Klosek, "A review of air separation technologies and their integration with energy conversion processes", Fuel Process. Technol., 70, 115 (2001). https://doi.org/10.1016/S0378-3820(01)00131-X
  8. D. Ruthven and S. Farooq, "Air separation by pressure swing adsorption", Gas Sep. Purif., 4, 141 (1990). https://doi.org/10.1016/0950-4214(90)80016-E
  9. M. Hassan, D. Ruthven, and N. Raghavan, "Air separation by pressure swing adsorption on a carbon molecular sieve", Chem. Eng. Sci., 41, 1333 (1986). https://doi.org/10.1016/0009-2509(86)87106-8
  10. L. Jiang, L. T. Biegler, and V. G. Fox, "Simulation and optimization of pressure-swing adsorption systems for air separation" AIChE J., 49, 1140 (2003). https://doi.org/10.1002/aic.690490508
  11. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  12. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  13. H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
  14. R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, "High pressure pure-and mixed-gas separation of $CO_2/CH_4$ by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity", J. Membr. Sci., 447, 387 (2013). https://doi.org/10.1016/j.memsci.2013.07.057
  15. R. Kumar and W. J. Koros, "High performance carbon molecular sieve membranes resistance to aggressive feed stream contaminants", Ind. Eng. Chem. Res., 58, 6740 (2019). https://doi.org/10.1021/acs.iecr.9b00899
  16. W. Salleh, A. Ismail, T. Matsuura, and M. Abdullah, "Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review", Sep. Purif. Rev., 40, 261 (2011). https://doi.org/10.1080/15422119.2011.555648
  17. W. Salleh and A. Ismail, "Effects of carbonization heating rate on $CO_2$ separation of derived carbon membranes", Sep. Purif. Technol., 88, 174 (2012). https://doi.org/10.1016/j.seppur.2011.12.019
  18. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  19. H. Gong, C. Y. Chuah, Y. Yang, and T.-H. Bae, "High performance composite membranes comprising $Zn(pyrz)_2(SiF_6)$ nanocrystals for $CO_2/CH_4$ separation", J. Ind. Eng. Chem., 60, 279 (2018). https://doi.org/10.1016/j.jiec.2017.11.014
  20. B. Zhang, Y. Shi, Y. Wu, T. Wang, and J. Qiu, "Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation" Sep. Sci. Technol., 49, 171 (2014). https://doi.org/10.1080/01496395.2013.838684
  21. L. Li, T. Wang, Q. Liu, Y. Cao, and J. Qiu, "A high $CO_2$ permselective mesoporous silica/carbon composite membrane for $CO_2$ separation", Carbon, 50, 5186 (2012). https://doi.org/10.1016/j.carbon.2012.06.060
  22. X. Yin, N. Chu, J. Yang, J. Wang, and Z. Li, Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for $CO_2$ separation", Int. J. Greenh. Gas Con., 15, 55 (2013). https://doi.org/10.1016/j.ijggc.2013.01.032
  23. P. S. Tin, T.-S. Chung, L. Jiang, and S. Kulprathipanja, "Carbon-zeolite composite membranes for gas separation", Carbon, 43, 2025 (2005). https://doi.org/10.1016/j.carbon.2005.03.003
  24. X. Yin, J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, and D. Yin, "Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties", J. Membr. Sci., 348, 181 (2010). https://doi.org/10.1016/j.memsci.2009.10.055
  25. C. Y. Chuah, K. Goh, Y. Yang, H. Gong, W. Li, H. E. Karahan, M. D. Guiver, R. Wang, and T.-H. Bae, "Harnessing filler materials for enhancing biogas separation membranes", Chem. Rev., 118, 8655 (2018). https://doi.org/10.1021/acs.chemrev.8b00091
  26. A. Corma, "From microporous to mesoporous molecular sieve materials and their use in catalysis", Chem. Rev., 97, 2373 (1997). https://doi.org/10.1021/cr960406n
  27. C. Y. Chuah, K. Goh, and T.-H. Bae, "Hierarchically structured HKUST-1 nanocrystals for enhanced $SF_6$ capture and recovery", J. Phys. Chem. C, 121, 6748 (2017). https://doi.org/10.1021/acs.jpcc.7b00291
  28. T. H. Nguyen, S. Kim, M. Yoon, and T. H. Bae, "Hierarchical zeolites with amine-functionalized mesoporous domains for carbon dioxide capture", ChemSusChem, 9, 455 (2016). https://doi.org/10.1002/cssc.201600004
  29. W. Li, S. Samarasinghe, and T.-H. Bae, "Enhancing $CO_2/CH_4$ separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8", J. Ind. Eng. Chem., 67, 156 (2018). https://doi.org/10.1016/j.jiec.2018.06.026
  30. T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. A Nair, "High-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals", Angew. Chem. Int. Ed., 49, 9863 (2010). https://doi.org/10.1002/anie.201006141
  31. C. Y. Chuah, S. Yu, K. Na, and T.-H. Bae, "Enhanced $SF_6$ recovery by hierarchically structured MFI zeolite", J. Ind. Eng. Chem., 62, 64 (2018). https://doi.org/10.1016/j.jiec.2017.12.045
  32. J.-R. Li, R. J. Kuppler, and H.-C. Zhou, "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., 38, 1477 (2009). https://doi.org/10.1039/b802426j
  33. S. Nandi and P. Walker Jr, "Separation of oxygen and nitrogen using 5A zeolite and carbon molecular sieves", Sep. Sci. Technol., 11, 441 (1976). https://doi.org/10.1080/01496397608085334
  34. F. Weigelt, P. Georgopanos, S. Shishatskiy, V. Filiz, T. Brinkmann, and V. Abetz, "Development and characterization of defect-free matrimid$^{(R)}$ mixed-matrix membranes containing activated carbon particles for gas separation", Polymers, 10, 51 (2018). https://doi.org/10.3390/polym10010051
  35. C. Y. Chuah and T.-H. Bae, "Incorporation of $Cu_3BTC_2$ nanocrystals to increase the permeability of polymeric membranes in $O_2/N_2$ separation", BMC Chem. Eng., 1, 2 (2019). https://doi.org/10.1186/s42480-019-0002-z
  36. A. Fuertes, D. Nevskaia, and T. Centeno, "Carbon composite membranes from Matrimid$^{(R)}$ and Kapton$^{(R)}$ polyimides for gas separation", Micropor. Mesopor. Mater., 33, 115 (1999). https://doi.org/10.1016/S1387-1811(99)00129-8