References
- P. Baskar and A. Senthilkumar, "Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine", Eng. Sci. Technol. Int. J., 19, 438 (2016). https://doi.org/10.1016/j.jestch.2015.08.011
-
D. Gielen, "
$CO_2$ removal in the iron and steel industry", Energy Convers. Manag., 44, 1027 (2003). https://doi.org/10.1016/S0196-8904(02)00111-5 - R. Chen and W. Yeun, "Review of the high-temperature oxidation of iron and carbon steels in air or oxygen", Oxid. Met., 59, 433 (2003). https://doi.org/10.1023/A:1023685905159
- M. S. Rahman and C. O. Perera, "Drying and food preservation", In Handbook of Food Preservation, p. 173, Marcel Dekker, New York (1999).
- R. Cornelissen and G. Hirs, "Exergy analysis of cryogenic air separation", Energy Convers. Manag., 39, 1821 (1998). https://doi.org/10.1016/S0196-8904(98)00062-4
- Y. Zhu, X. Liu, and Z. Zhou, "Optimization of cryogenic air separation distillation columns", In Proceedings of 2006 6th World Congress on Intelligent Control and Automation, p. 7702 (2006).
- A. Smith and J. Klosek, "A review of air separation technologies and their integration with energy conversion processes", Fuel Process. Technol., 70, 115 (2001). https://doi.org/10.1016/S0378-3820(01)00131-X
- D. Ruthven and S. Farooq, "Air separation by pressure swing adsorption", Gas Sep. Purif., 4, 141 (1990). https://doi.org/10.1016/0950-4214(90)80016-E
- M. Hassan, D. Ruthven, and N. Raghavan, "Air separation by pressure swing adsorption on a carbon molecular sieve", Chem. Eng. Sci., 41, 1333 (1986). https://doi.org/10.1016/0009-2509(86)87106-8
- L. Jiang, L. T. Biegler, and V. G. Fox, "Simulation and optimization of pressure-swing adsorption systems for air separation" AIChE J., 49, 1140 (2003). https://doi.org/10.1002/aic.690490508
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
- L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
- H. B. Park, C. H. Jung, Y. M. Lee, A. J. Hill, S. J. Pas, S. T. Mudie, E. Van Wagner, B. D. Freeman, and D. J. Cookson, "Polymers with cavities tuned for fast selective transport of small molecules and ions", Science, 318, 254 (2007). https://doi.org/10.1126/science.1146744
-
R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, "High pressure pure-and mixed-gas separation of
$CO_2/CH_4$ by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity", J. Membr. Sci., 447, 387 (2013). https://doi.org/10.1016/j.memsci.2013.07.057 - R. Kumar and W. J. Koros, "High performance carbon molecular sieve membranes resistance to aggressive feed stream contaminants", Ind. Eng. Chem. Res., 58, 6740 (2019). https://doi.org/10.1021/acs.iecr.9b00899
- W. Salleh, A. Ismail, T. Matsuura, and M. Abdullah, "Precursor selection and process conditions in the preparation of carbon membrane for gas separation: A review", Sep. Purif. Rev., 40, 261 (2011). https://doi.org/10.1080/15422119.2011.555648
-
W. Salleh and A. Ismail, "Effects of carbonization heating rate on
$CO_2$ separation of derived carbon membranes", Sep. Purif. Technol., 88, 174 (2012). https://doi.org/10.1016/j.seppur.2011.12.019 - C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
-
H. Gong, C. Y. Chuah, Y. Yang, and T.-H. Bae, "High performance composite membranes comprising
$Zn(pyrz)_2(SiF_6)$ nanocrystals for$CO_2/CH_4$ separation", J. Ind. Eng. Chem., 60, 279 (2018). https://doi.org/10.1016/j.jiec.2017.11.014 - B. Zhang, Y. Shi, Y. Wu, T. Wang, and J. Qiu, "Towards the preparation of ordered mesoporous carbon/carbon composite membranes for gas separation" Sep. Sci. Technol., 49, 171 (2014). https://doi.org/10.1080/01496395.2013.838684
-
L. Li, T. Wang, Q. Liu, Y. Cao, and J. Qiu, "A high
$CO_2$ permselective mesoporous silica/carbon composite membrane for$CO_2$ separation", Carbon, 50, 5186 (2012). https://doi.org/10.1016/j.carbon.2012.06.060 -
X. Yin, N. Chu, J. Yang, J. Wang, and Z. Li, Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for
$CO_2$ separation", Int. J. Greenh. Gas Con., 15, 55 (2013). https://doi.org/10.1016/j.ijggc.2013.01.032 - P. S. Tin, T.-S. Chung, L. Jiang, and S. Kulprathipanja, "Carbon-zeolite composite membranes for gas separation", Carbon, 43, 2025 (2005). https://doi.org/10.1016/j.carbon.2005.03.003
- X. Yin, J. Wang, N. Chu, J. Yang, J. Lu, Y. Zhang, and D. Yin, "Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties", J. Membr. Sci., 348, 181 (2010). https://doi.org/10.1016/j.memsci.2009.10.055
- C. Y. Chuah, K. Goh, Y. Yang, H. Gong, W. Li, H. E. Karahan, M. D. Guiver, R. Wang, and T.-H. Bae, "Harnessing filler materials for enhancing biogas separation membranes", Chem. Rev., 118, 8655 (2018). https://doi.org/10.1021/acs.chemrev.8b00091
- A. Corma, "From microporous to mesoporous molecular sieve materials and their use in catalysis", Chem. Rev., 97, 2373 (1997). https://doi.org/10.1021/cr960406n
-
C. Y. Chuah, K. Goh, and T.-H. Bae, "Hierarchically structured HKUST-1 nanocrystals for enhanced
$SF_6$ capture and recovery", J. Phys. Chem. C, 121, 6748 (2017). https://doi.org/10.1021/acs.jpcc.7b00291 - T. H. Nguyen, S. Kim, M. Yoon, and T. H. Bae, "Hierarchical zeolites with amine-functionalized mesoporous domains for carbon dioxide capture", ChemSusChem, 9, 455 (2016). https://doi.org/10.1002/cssc.201600004
-
W. Li, S. Samarasinghe, and T.-H. Bae, "Enhancing
$CO_2/CH_4$ separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8", J. Ind. Eng. Chem., 67, 156 (2018). https://doi.org/10.1016/j.jiec.2018.06.026 - T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, and S. A Nair, "High-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals", Angew. Chem. Int. Ed., 49, 9863 (2010). https://doi.org/10.1002/anie.201006141
-
C. Y. Chuah, S. Yu, K. Na, and T.-H. Bae, "Enhanced
$SF_6$ recovery by hierarchically structured MFI zeolite", J. Ind. Eng. Chem., 62, 64 (2018). https://doi.org/10.1016/j.jiec.2017.12.045 - J.-R. Li, R. J. Kuppler, and H.-C. Zhou, "Selective gas adsorption and separation in metal-organic frameworks", Chem. Soc. Rev., 38, 1477 (2009). https://doi.org/10.1039/b802426j
- S. Nandi and P. Walker Jr, "Separation of oxygen and nitrogen using 5A zeolite and carbon molecular sieves", Sep. Sci. Technol., 11, 441 (1976). https://doi.org/10.1080/01496397608085334
-
F. Weigelt, P. Georgopanos, S. Shishatskiy, V. Filiz, T. Brinkmann, and V. Abetz, "Development and characterization of defect-free matrimid
$^{(R)}$ mixed-matrix membranes containing activated carbon particles for gas separation", Polymers, 10, 51 (2018). https://doi.org/10.3390/polym10010051 -
C. Y. Chuah and T.-H. Bae, "Incorporation of
$Cu_3BTC_2$ nanocrystals to increase the permeability of polymeric membranes in$O_2/N_2$ separation", BMC Chem. Eng., 1, 2 (2019). https://doi.org/10.1186/s42480-019-0002-z -
A. Fuertes, D. Nevskaia, and T. Centeno, "Carbon composite membranes from Matrimid
$^{(R)}$ and Kapton$^{(R)}$ polyimides for gas separation", Micropor. Mesopor. Mater., 33, 115 (1999). https://doi.org/10.1016/S1387-1811(99)00129-8