DOI QR코드

DOI QR Code

Review on Proton Exchange Membranes for Microbial Fuel Cell Application

미생물 연료 전지 적용을 위한 양성자 교환막에 대한 검토

  • Kim, Ji Min (Bio-Convergence, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 김지민 (연세대학교 융합과학공학부 바이오융합과) ;
  • 라즈쿠마 파텔 (연세대학교 융합과학공학부 에너지환경융합과)
  • Received : 2020.07.05
  • Accepted : 2020.07.17
  • Published : 2020.08.31

Abstract

As unrenewable energy resources have depleted over the years, the demand for renewable energy has increased promoting research for more effective methods to produce renewable energy. The field of fuel cell development, specifically microbial fuel cells (MFCs), has developed because of the dual performance potential of the technology. MFCs convert power by facilitating electrode-reducing organisms such as bacteria (microbes) as a catalyst to produce electrical energy. MFCs use domestic and industrial wastewater as fuel to initiate the process, purifying the wastewater as a result. Proton exchange membranes (PEM) play a crucial role in MFCs as a separator between the anodes and cathodes chambers allowing only protons to effectively pass through. Nafion is the commercially used PEM for MFCs, but there are many setbacks: such as cost, production time, and less effective proton conductivity properties. In this review there will be largely two parts. Firstly, several newly developed PEM are discussed as possible replacements of Nafion. Secondly, MFC based on PEM, blended PEM and composite PEM are summarized.

재생 불가능한 에너지 자원이 수년에 걸쳐 고갈됨에 따라, 재생 에너지 생산을 위한 보다 효과적인 방법에 대한 연구가 증가되었다. 연로전지 개발의 한 분야인 미생물 연료전지(MFC)는 이중 성능의 잠재력 덕분에 발전하였다. MFC는 박테리아와 같은 전극 감소 생물에서 전력을 모아서 전기 에너지를 생산한다. MFC는 폐수를 연료로 사용하여 에너지를 생산하고 폐수를 정화한다. 양성자 교환막(PEM)은 양극과 음극 챔버의 분리막으로, 양성자만 효과적으로 통과할 수 있게 하는 중요한 역할을 한다. Nafion은 MFC에 상업적으로 사용되는 PEM이지만 비용, 생산 시간, 양성자 전도성 차원에서 보완할 점들이 많다. 본 리뷰 논문에는 Nafion을 대체할 수 있는 새로 개발된 PEM 몇 가지를 논의하였다. 또한, PEM, 혼합 PEM 및 복합 PEM에 기반한 MFC를 요약하고자 한다.

Keywords

References

  1. X. J. Lee, P. L. Show, T. Katsuda, W. H. Chen, and J. S. Chang, "Surface grafting techniques on the improvement of membrane bioreactor: State-of-the-art advances", Bioresour. Technol., 269, 489 (2018). https://doi.org/10.1016/j.biortech.2018.08.090
  2. M. T. Noori, M. M. Ghangrekar, C. K. Mukherjee, and B. Min, "Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation", Biotechnol. Adv., 37, 107420 (2019). https://doi.org/10.1016/j.biotechadv.2019.107420
  3. S. Rajendran, M. Naushad, K. Raju, and R. Boukherroub, "An overview of current trends in emergence of nanomaterials for sustainable microbial fuel cells", pp 341, Springer International Publishing, Cham (2019).
  4. Z. He and F. Mansfeld, "Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies", Energy Environ. Sci., 2, 215 (2009). https://doi.org/10.1039/B814914C
  5. M. Aghababaie, M. Farhadian, A. Jeihanipour, and D. Biria, "Effective factors on the performance of microbial fuel cells in wastewater treatment - A review", Environ. Technol. Rev., 4, 71 (2015). https://doi.org/10.1080/09593330.2015.1077896
  6. D-E. Kwon and J. Kim, "Forward osmosis membrane to treat effluent from anaerobic fluidized bed bioreactor for wastewater reuse applications", Membr. J., 28, 196 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.196
  7. J. H. Kim, R. Patel, X. Z. Lei, and S. Y. Heo, "Preparation and characterization of proton conducting crosslinked P(VDF-co-CTFE)-MAA/SEMA membranes", Membr. J., 23, 290 (2013).
  8. M. E. Lee, J. Oh, N-S. Park, D-G Koh, H. Jang, and Y. Ahn, "Change of sludge denitrification and nitrification rate according to the operating conditions in advanced wastewater treatment processes", Membr. J., 28, 31 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.31
  9. S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.171
  10. S-H. Do, J. S. Roh, and H. B. Park, "Carbon-free hydrogen production using membrane reactors", Membr. J., 28, 297 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.297
  11. B. E. Logan, "Exoelectrogenic bacteria that power microbial fuel cells", Nat. Rev. Microbiol., 7, 375 (2009). https://doi.org/10.1038/nrmicro2113
  12. S. Das, K. Dutta, and D. Rana, "Polymer electrolyte membranes for microbial fuel cells: A review", Pol. Rev., 58, 610 (2018). https://doi.org/10.1080/15583724.2017.1418377
  13. J. X. Leong, W. R. W. Daud, M. Ghasemi, K. B. Liew, and M. Ismail, "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review", Renew. Sust. Energ. Rev., 28, 575 (2013). https://doi.org/10.1016/j.rser.2013.08.052
  14. P. Miao, "Electrochemical sensing strategies for the detection of endotoxin: A review", RSC Adv., 3, 9606 (2013). https://doi.org/10.1039/c3ra00047h
  15. G. Hernandez-Florez, A. Andrio, V. Compan, O. Solorza-Feria, and H. M. Poggi-Varaldo, "Synthesis and characterization of organic agar-based membranes for microbial fuel cells", J. Power Sources, 435, 226772 (2019). https://doi.org/10.1016/j.jpowsour.2019.226772
  16. J. R. Kim, S. Cheng, S.-E. Oh, and B. E. Logan, "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41, 1004 (2007). https://doi.org/10.1021/es062202m
  17. T. H. Choi, Y. B. Won, J. W. Lee, D. W. Shin, Y. M. Lee, M. Kim, and H. B. Park, "Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether sulfone) membranes", J Power Sources, 220, 269 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.109
  18. K. J. Chae, M. Choi, F. F. Ajayi, W. Park, I. S. Chang, and I. S. Kim, "Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells", Energy & Fuels, 22, 169 (2008). https://doi.org/10.1021/ef700308u
  19. G. Bahlakeh, M. M. Hasani-Sadrabadi, S. H. Emami, S. N. S. Eslami, E. Dashtimoghadam, M. A. Shokrgozar, and K. I. Jacob, "Experimental investigation and molecular dynamics simulation of acid-doped polybenzimidazole as a new membrane for air-breathing microbial fuel cells", J. Membr. Sci., 535, 221 (2017). https://doi.org/10.1016/j.memsci.2017.04.045
  20. A. G. Kumar, S. Saha, H. Komber, B. R. Tiwari, M. M. Ghangrekar, B. Voit, and S. Banerjee, "Trifluoromethyl and benzyl ether side groups containing novel sulfonated co-poly(ether imide)s: Application in microbial fuel cell", Eur. Polym. J., 118, 451 (2019). https://doi.org/10.1016/j.eurpolymj.2019.06.014
  21. Q. Xu, L. Wang, C. Li, X. Wang, C. Li, and Y. Geng, "Study on improvement of the proton conductivity and anti-fouling of proton exchange membrane by doping SGO@$SiO_2$ in microbial fuel cell applications", Int. J. Hydrogen Energy, 44, 15322 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.238
  22. C. Li, L. Wang, X. Wang, C. Li, Q. Xu, and G. Li, "Fabrication of a SGO/PVDF-g-PSSA composite proton-exchange membrane and its enhanced performance in microbial fuel cells", J. Chem. Technol. Biotechnol., 94, 398 (2019). https://doi.org/10.1002/jctb.5783
  23. P. Kumar, and R. P. Bharti, "Nanocomposite polymer electrolyte membrane for high performance microbial fuel cell: Synthesis, characterization and application", J. Electrochem. Soc., 166, F1190 (2019). https://doi.org/10.1149/2.0671915jes
  24. P. N. Venkatesan and S. Dharmalingam, "Effect of zeolite on SPEEK/zeolite hybrid membrane as electrolyte for microbial fuel cell applications", RSC Adv., 5, 84004 (2015). https://doi.org/10.1039/C5RA14701H
  25. X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, and Y. Cui, "Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells", Nano Lett., 11, 291 (2011). https://doi.org/10.1021/nl103905t
  26. S. K. Kamaraj, S. M. Romano, V. C. Moreno, H. M. Poggi-Varaldo, and O. Solorza-Feria, "Use of novel reinforced cation exchange membranes for microbial fuel cells", Electrochim. Acta, 176, 555 (2015). https://doi.org/10.1016/j.electacta.2015.07.042
  27. K. Ben Liew, J. X. Leong, W. R. Wan Daud, A. Ahmad, J. J. Hwang, and W. Wu, "Incorporation of silver graphene oxide and graphene oxide nanoparticles in sulfonated polyether ether ketone membrane for power generation in microbial fuel cell", J. Power Sources, 449, 227490 (2019).
  28. A. Mayahi, H. Ilbeygi, A. F. Ismail, J. Jaafar, W. R. W. Daud, D. Emadzadeh, E. Shamsaei, D. Martin, M. Rahbari-Sisakht, M. Ghasemi, and J. Zaidi, "SPEEK/cSMM membrane for simultaneous electricity generation and wastewater treatment in microbial fuel cell", J. Chem. Technol. Biotechnol., 90, 641 (2015). https://doi.org/10.1002/jctb.4622
  29. G. Sowmya and M. R. Prabhu, "Fabrication of blend polymer electrolyte membrane with poly (amide imide)-sulfonated poly (ether ether ketone) for microbial fuel cell", Mater. Res., 6, 025519 (2018).
  30. M. Elangovan and S. Dharmalingam, "Effect of polydopamine on quaternized poly(ether ether ketone) for antibiofouling anion exchange membrane in microbial fuel cell", Polym. Adv. Technol., 29, 275 (2018). https://doi.org/10.1002/pat.4112
  31. C. Li, L. Wang, X. Wang, M. Kong, Q. Zhang, and G. Li, "Synthesis of PVDF-g-PSSA proton exchange membrane by ozone-induced graft copolymerization and its application in microbial fuel cells", J. Membr. Sci., 527, 35 (2017). https://doi.org/10.1016/j.memsci.2016.12.065
  32. S. Singha, T. Jana, J. A. Modestra, A. Naresh Kumar, and S. V. Mohan, "Highly efficient sulfonated polybenzimidazole as a proton exchange membrane for microbial fuel cells", J. Power Sources, 317, 143 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.103
  33. H. Nagar, N. Badhrachalam, V. V. B. Rao, and S. Sridhar, "A novel microbial fuel cell incorporated with polyvinylchloride/4A zeolite composite membrane for kitchen wastewater reclamation and power generation", Mater. Chem. Phys., 224, 175 (2019). https://doi.org/10.1016/j.matchemphys.2018.12.023
  34. A. Sivasankaran, D. Sangeetha, and Y. H. Ahn, "Nanocomposite membranes based on sulfonated polystyrene ethylene butylene polystyrene (SSEBS) and sulfonated $SiO_{2}$ for microbial fuel cell application", Chem. Eng. J., 289, 442 (2016). https://doi.org/10.1016/j.cej.2015.12.095