DOI QR코드

DOI QR Code

Electrochromic Properties of Hexyl- and Perfluorohexyl-Substituted Symmetrical Viologens in Ionic Gels

헥실기와 과불화헥실기가 치환된 대칭형 비올로겐을 포함하는 이온젤의 전기변색 특성에 대한 연구

  • Pande, Gaurav K. (Department of Organic Material Science and Engineering, Pusan National Univeristy) ;
  • Park, Jong S. (Department of Organic Material Science and Engineering, Pusan National Univeristy)
  • 가우랍 판데 (부산대학교 유기소재시스템공학과) ;
  • 박종승 (부산대학교 유기소재시스템공학과)
  • Received : 2020.07.30
  • Accepted : 2020.08.23
  • Published : 2020.08.31

Abstract

Herein, we present the electrochromic properties of viologen compounds with hexyl and perfluorohexyl substituents in an ionic gel composition. Hexyl viologen (1), and corresponding phenyl-inserted viologen (2) and perfluorohexyl phenyl viologen (3), showed low reduction potentials of -1.4, -1.2, and -1.3 V, respectively. Spectroelectrochemistry measurements of 1 revealed changes from yellow to blue, with a λmax of 596 nm. Further, the phenyl-inserted viologens 2 and 3 showed green transitions, with a λmax of 600 nm, due to longer conjugation by the phenyl moiety. In the cyclic stability measurements, viologen 1 exhibited reversible color changes, with a transmittance change of 35.1% and a corresponding change in optical density of 0.227. Its coloration efficiency was calculated to be 83.6 ㎠/C. Density functional theory calculations showed that both the terminal substitution and phenyl insertion effectively controlled the band-gap energy of the resulting viologen compounds. The findings of this study prove that substituted viologens provide a simple and efficient method to produce wide color ranges using an electrochromic approach. Hence, these compounds will find promising applications in electrochromic displays and windows.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. S. Sen, J. Saraidaridis, S. Kim, G. Tayhas, and R. Palmore, "Viologens as Charge Carriers in a Polymer-Based Battery Anode", ACS Appl. Mater. Interfaces, 2013, 5, 7825-7830. https://doi.org/10.1021/am401590q
  2. H. C. Moon, T. P. Lodge, and C. D. Frisbie, "Solution Processable, Electrochromic Ion Gels for Sub-1 V, Flexible Displays on Plastic", Chem. Mater., 2015, 27, 1420-1425. https://doi.org/10.1021/acs.chemmater.5b00026
  3. H. Oh, D. G. Seo, T. Y. Yun, C. Y. Kim, and H. C. Moon, "Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl. Mater. Interfaces, 2017, 9, 7658-7665. https://doi.org/10.1021/acsami.7b00624
  4. H. C. Lu, S. Y. Kao, H. F. Yu, T. H. Chang, C. W. Kung, and K. C. Ho, "Achieving Low-Energy Driven Viologen-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids", ACS Appl. Mater. Interfaces, 2016, 8, 30351-30361. https://doi.org/10.1021/acsami.6b10152
  5. J. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, "Organic Electroluminescent Devices", Science, 1996, 279, 884-888.
  6. E. Hadjoudis and I. Mavridis, "Photochromism and Thermochromism of Schiff Bases in the Solid State: Structural Aspects", Chem. Soc. Rev., 2004, 33, 579-588. https://doi.org/10.1039/b303644h
  7. C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, and B. Gregg, "Photoelectrochromic Windows and Displays", Nature, 1996, 383, 608-610. https://doi.org/10.1038/383608a0
  8. S. Kao, Y. Kawahara, S. Nakatsuji, and K. Ho, "Achieving a Large Contrast, Low Driving Voltage, and High Stability Electrochromic Device with a Viologen Chromophore", J. Mater. Chem. C., 2015, 3, 3266-3272. https://doi.org/10.1039/C5TC00456J
  9. G. Sonmez, H. Meng, and F. Wudl, "Organic Polymeric Electrochromic Devices: Polychromism with Very High Coloration Efficiency", Chem. Mater., 2004, 16, 574-580. https://doi.org/10.1021/cm0301773
  10. C. Granqvist, "Electrochromic Tungsten Oxide Films: Review of Progress 1993-1998", Sol. Energy Mater. Sol. Cells, 2000, 60, 201-262. https://doi.org/10.1016/S0927-0248(99)00088-4
  11. A. Guerfi and L. Dao, "Electrochromic Molybdenum Oxide Thin Film Prepared by Electrodeposition", J. Electrochem. Soc., 1989, 136, 2435-2436. https://doi.org/10.1149/1.2097408
  12. B. Jelle and G. Hagen, "Transmission Spectra of an Electrochromic Window Based on Polyaniline, Prussian Blue and Tungsten Oxide", J. Electrochem. Soc., 1993, 140, 3560-3564. https://doi.org/10.1149/1.2221126
  13. S. Suganya, N. Kim, J. Y. Jeong, and J. S. Park, "Benzotriazole-Based Donor-Acceptor Type Low Band-gap Polymers with a Siloxane-Terminated Side-Chain for Electrochromic Applications", Polymer, 2017, 116, 226-232. https://doi.org/10.1016/j.polymer.2017.03.075
  14. M. Otely, F. Alamer, Y. Zhu, A. Singhaviranon, X. Zhang, M. Li, A. Kumar, and G. Sotzing, "Acrylated Poly(3,4-propylenedioxythiopene) for Enhancement of Lifetime and Optical Properties for Single-Layer Electrochromic Devices", ACS Appl. Mater. Interfaces, 2014, 6, 1734-1739. https://doi.org/10.1021/am404686w
  15. G. Ding, C. Cho, C. Chen, D. Zhou, X. Wang, A. X. Tan, J. Xu, and X. Lu, "Black-to-Transmissive Electrochromism of Azulene-Based Donor-Acceptor Copolymers Complemented by Poly(4-styrene sulfonic acid)-Doped Poly(3,4-ethylenedioxythiophene)", Org. Electron., 2013, 14, 2748-2755. https://doi.org/10.1016/j.orgel.2013.07.037
  16. T. Augusto, E. Teixeira Neto, A. A. Teixeira Neto, R. Vichessi, M. Vidotti, and S. Cordoba de Torresi, "Electrophoretic Deposition of Au@PEDOT Nanoparticles Towards the Construction of High-Performance Electrochromic Electrodes", Sol. Energy Mater. Sol. Cells, 2013, 118, 72-80. https://doi.org/10.1016/j.solmat.2013.07.031
  17. G. Chidichimo, B. De Simone, D. Imbardelli, M. De Benedittis, M. Barberio, L. Ricciardi, and A. Beneduci, "Influence of Oxygen Impurities on the Electrochromic Response of Viologen-Based Plastic Films", Phys. Chem. C, 2014, 118, 13484-13492. https://doi.org/10.1021/jp503740u
  18. B. Gadgil, P. Damlina, T. Aaritaloa, and C. Kvarnstrom, "Electrosynthesis of Viologen Cross-Linked Polythiophene in Ionic Liquids and its Electrochromic Properties", Electrochem. Acta, 2014, 133, 268-274. https://doi.org/10.1016/j.electacta.2014.03.154
  19. B. Gadgil, P. Damlina, E. Dmitrieva, T. Aaritaloa, and C. Kvarnstrom, "ESR/UV-Vis-NIR Spectroelectrochemical Study and Electrochromic Contrast Enhancement of a Polythiophene Derivative Bearing a Pendant Viologen", RSC Adv., 2015, 5, 42242-42249. https://doi.org/10.1039/C5RA04618A
  20. R. Sydam, M. Deepa, and A. Joshi, "A Novel 1,1'-bis[4-(5,6-dimethyl-1H-benzimidazole-1-yl) butyl]-4,4'-bipyridinium dibromide (viologen) for a High Contrast Electrochromic Device", Org. Electron., 2013, 14, 1027-1036. https://doi.org/10.1016/j.orgel.2013.01.035
  21. Y. Watanabe, K. Imaizumi, K. Nakamura, and N. Kobayashi, "Effect of Counter Electrode Reaction on Coloration Properties of Phthalate-Based Electrochromic Cell", Sol. Energy Mater. Sol. Cells, 2012, 99, 88-94. https://doi.org/10.1016/j.solmat.2011.06.020
  22. F. Han, M. Higuchi, and D. Kurth, "Metallo-Supramolecular Polymers Based on Functionalized Bis-terpyridines as Novel Electrochromic Materials", Adv. Mater., 2007, 19, 3928-3931. https://doi.org/10.1002/adma.200700931
  23. C. Park, J. Heo, K. Kim, G. Yi, J. Kang, J. Park, Y. Kim, and S. Park, "1-Dimensional Fibre-Based Field-Effect Transistors Made by Low-Temperature Photochemically Activated Sol-Gel Metal-Oxide Materials for Electronic Textiles", RSC Adv. 2016, 6, 18596-18600. https://doi.org/10.1039/C5RA21613C
  24. J. B. Arochiam, H. S. Son, S. H. Han, G. Balamurugan, Y. H. Kim, and J. S. Park, "Iron Phthalocyanine Incorporated Metallo-supramolecular Polymer for Superior Electrochromic Performance with High Coloration Efficiency and Switching Stability", ACS Appl. Energy Mater., 2019, 2, 8416-8424. https://doi.org/10.1021/acsaem.9b01022
  25. N. Kim and J. S. Park, "Electrochromic Performance of Singlelayered Electrochromic Device Containing Picene Ion Gel", Text. Sci. Eng., 2020, 67, 100-105.
  26. H.C. Lu, S. Y. Kao, T. H. Chang, C. W. Kung, and K. C. Ho, "An Electrochromic Device Based on Prussian Blue, Selfimmobilized Vinyl Benzyl Viologen, and Ferrocene", Sol. Energy Mater. Sol. Cells, 2016, 147, 75-84. https://doi.org/10.1016/j.solmat.2015.11.044
  27. G. K. Pande, J. H. Choi, J. E. Lee, Y. E. Kim, J. H. Choi, H. W. Choi, H. G. Chae, and J. S. Park, "Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane Exhibiting Outstanding Electrochromic Performances", Chem. Eng. J., 2020, 393, 124690-124698. https://doi.org/10.1016/j.cej.2020.124690
  28. Y. Alesanco, A. Vinuales, G. Cabanero, J. Rodriguez, and R. Tena-Zaera, "Colorless-to-Black/Grey Electrochromic Devices Based on Single 1-Alkyl-1-Aryl Asymmetric Viologen- Modified Monolayered Electrodes", Adv. Optical Mater., 2017, 5, 1600989. https://doi.org/10.1002/adom.201600989
  29. L. Striepe and T. Baumgartner, "Viologens and Their Application as Functional Materials", Chemistry-A European J. Rev., 2017, 23, 16924-16940. https://doi.org/10.1002/chem.201703348
  30. G. K. Pande, N. Kim, J. H. Choi, G. Balamurugan, H. C. Moon, and J. S. Park, "Effect of Counter Ion on Electrochromic Behaviors of Asymmetrically Substituted Viologens", Sol. Energy Mater. Sol. Cells, 2019, 197, 25-31. https://doi.org/10.1016/j.solmat.2019.04.004
  31. J. H. Choi, G. K. Pande, Y. R. Lee, and J. S. Park, "Electrospun Ion Gel Nanofibers for High-Performance Electrochromic Devices with Outstanding Electrochromic Switching and Long-term Stability", Polymer, 2020, 194, 122402-122410. https://doi.org/10.1016/j.polymer.2020.122402
  32. T. Qiu, X. Xu, J. Liu, and X. Qian, "Novel Perfluoroalkyl Phthalocyanine Metal Derivatives: Synthesis and Photodynamic Activities", Dyes Pigments, 2009, 83, 127-133. https://doi.org/10.1016/j.dyepig.2009.04.007
  33. H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, "Multicolored, Low Power, Flexible Electrochromic Devices Based on Ion Gels", ACS Appl. Mater. Interfaces, 2016, 8, 6252-6260. https://doi.org/10.1021/acsami.6b01307
  34. H. C. Ko, S. Park, W. Paik, and H. Lee, "Electrochemistry and Electrochromism of the Polythiophene Derivative with Viologen Pendant", Synthetic Metals, 2002, 132, 15-20. https://doi.org/10.1016/S0379-6779(02)00217-5