DOI QR코드

DOI QR Code

Mist-CVD법으로 증착된 다결정 산화갈륨 박막의 MOSFET 소자 특성 연구

Characteristics of MOSFET Devices with Polycrystalline-Gallium-Oxide Thin Films Grown by Mist-CVD

  • 서동현 (한국세라믹기술원 에너지환경본부) ;
  • 김용현 (한국세라믹기술원 에너지환경본부) ;
  • 신윤지 (한국세라믹기술원 에너지환경본부) ;
  • 이명현 (한국세라믹기술원 에너지환경본부) ;
  • 정성민 (한국세라믹기술원 에너지환경본부) ;
  • 배시영 (한국세라믹기술원 에너지환경본부)
  • Seo, Dong-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Yong-Hyeon (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Yun-Ji (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Myung-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeong, Seong-Min (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Bae, Si-Young (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
  • 투고 : 2020.07.27
  • 심사 : 2020.08.12
  • 발행 : 2020.09.01

초록

In this research, we evaluated the electrical properties of polycrystalline-gallium-oxIde (Ga2O3) thin films grown by mist-CVD. A 500~800 nm-thick Ga2O3 film was used as a channel in a fabricated bottom-gate MOSFET device. The phase stability of the β-phase Ga2O3 layer was enhanced by an annealing treatment. A Ti/Al metal stack served as source and drain electrodes. Maximum drain current (ID) exceeded 1 mA at a drain voltage (VD) of 20 V. Electron mobility of the β-Ga2O3 channel was determined from maximum transconductance (gm), as approximately, 1.39 ㎠/Vs. Reasonable device characteristics were demonstrated, from measurement of drain current-gate voltage, for mist-CVD-grown Ga2O3 thin films.

키워드

참고문헌

  1. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
  2. M. H. Wong, K. Goto, H. Murakami, Y. Kumagai, and M. Higashiwaki, IEEE Electron Device Lett., 40, 431 (2019). [DOI: https://doi.org/10.1109/LED.2018.2884542]
  3. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 103, 123511 (2013). [DOI: https://doi.org/10.1063/1.4821858]
  4. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett., 100, 013504 (2012). [DOI: https://doi.org/10.1063/1.3674287]
  5. K. Akaiwa, K. Kaneko, K. Ichino, and S. Fujita, Jpn. J. Appl. Phys., 55, 1202BA (2016). [DOI: https://doi.org/10.7567/JJAP.55.1202BA]
  6. Y. An, L. Dai, Y. Wu, B. Wu, Y. Zhao, T. Liu, H. Hao, Z. Li, G. Niu, J. Zhang, Z. Quan, and S. Ding, J. Adv. Dielectr., 9, 1950032 (2019). [DOI: https://doi.org/10.1142/S2010135X19500322]
  7. N. H. Kim and H. W. Kim, Mater. Sci. Forum, 475, 3377 (2005). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.475-479.3377]
  8. H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P. D. Ye, IEEE Electron Device Lett., 38, 103 (2017). [DOI: https://doi.org/10.1109/LED.2016.2635579]
  9. D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, Appl. Phys. Lett., 105, 023507 (2014). [DOI: https://doi.org/10.1063/1.4890524]
  10. J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, Appl. Phys. Lett., 97, 142106 (2010). [DOI: https://doi.org/10.1063/1.3499306]
  11. K. H. Kim, M. T. Ha, Y. J. Kwon, H. Lee, S. M. Jeong, and S. Y. Bae, ECS J. Solid State Sci. Technol., 8, Q3165 (2019). [DOI: https://doi.org/10.1149/2.0301907jss]
  12. Y. Cheng, Y. Xu, Z. Li, J. Zhang, D. Chen, Q. Feng, S. Xu, H. Zhou, J. Zhang, Y. Hao, and C. Zhang, J. Alloys Compd., 831, 154776 (2020). [DOI: https://doi.org/10.1016/j.jallcom.2020.154776]
  13. G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, IEEE Trans. Electron Devices, 62, 3640 (2015). [DOI: https://doi.org/10.1109/TED.2015.2477438]
  14. Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). [DOI: https://doi.org/10.1063/1.5058059]
  15. X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, J. Alloys Compd., 660, 136 (2016). [DOI: https://doi.org/10.1016/j.jallcom.2015.11.145]
  16. Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, Appl. Phys. Lett., 109, 102106 (2016). [DOI: https://doi.org/10.1063/1.4962538]
  17. H. Zhou, K. Maize, G. Qiu, A. Shakouri, and P. D. Ye, Appl. Phys. Lett., 111, 092102 (2017). [DOI: https://doi.org/10.1063/1.5000735]