DOI QR코드

DOI QR Code

Molecularly engineered switchable photo-responsive membrane in gas separation for environmental protection

  • Rosli, Aishah (Biomass School of Chemical Engineering Campus, Universiti Sains Malaysia) ;
  • Low, Siew Chun (Biomass School of Chemical Engineering Campus, Universiti Sains Malaysia)
  • 투고 : 2019.03.05
  • 심사 : 2019.06.10
  • 발행 : 2020.08.31

초록

In recent years, stimuli-responsive materials have garnered interest due to their ability to change properties when exposed to external stimuli, making it useful for various applications including gas separation. Light is a very attractive trigger for responsive materials due to its speedy and non-invasive nature as well as the potential to reduce energy costs significantly. Even though light is deemed as an appealing stimulus for the development of stimuli-responsive materials, this avenue has yet to be extensively researched, as evidenced by the fewer works done on the photo-responsive membranes. Of these, there are even less research done on photo-responsive materials for the purpose of gas separation, thus, we have collected the examples that answer both these criteria in this review. This review covers the utilisation of photo-responsive materials specifically for gas separation purposes. Photo-chromic units, their integration into gas separation systems, mechanism and research that have been done on the topic so far are discussed.

키워드

참고문헌

  1. Shim J-G, Lee DW, Lee JH, Kwak N-S. Experimental study on capture of carbon dioxide and production of sodium bicarbonate from sodium hydroxide. Environ. Eng. Res. 2016;21:297-303. https://doi.org/10.4491/eer.2016.042
  2. Patkool C, Chawakitchareon P, Anuwattana R. Enhancement of efficiency of activated carbon impregnated chitosan for carbon dioxide adsorption. Environ. Eng. Res. 2014;19:289-292. https://doi.org/10.4491/eer.2014.S1.008
  3. Rosli A, Ahmad AL, Lim JK, Low SC. Advances in liquid absorbents for $CO_2$ capture: A Review. J. Phys. Sci. 2017;28:121. https://doi.org/10.21315/jps2017.28.s1.8
  4. Ahmad AL, Rosli A, Low SC, Lim JK. Effects of Silica loading on the absorption of carbon dioxide by mixed matrix membranes. J. Phys. Sci. 2018;29:91-97. https://doi.org/10.21315/jps2018.29.s1.12
  5. Dalane K, Dai Z, Mogseth G, Hillestad M, Deng L. Potential applications of membrane separation for subsea natural gas processing: A review. J. Nat. Gas Sci. Eng. 2017;39:101-117. https://doi.org/10.1016/j.jngse.2017.01.023
  6. Guo Z, Zhang XM, Zhang CL, Luan JY. Research development of membrane materials for separation of $CO_2$ from flue gas. Xian Dai Hua Gong. 2016;36:42-45&47.
  7. Hamid MRA, Jeong HK. Recent advances on mixed-matrix membranes for gas separation: Opportunities and engineering challenges. Korean J. Chem. Eng. 2018;35:1577-1600. https://doi.org/10.1007/s11814-018-0081-1
  8. Sasikumar B, Arthanareeswaran G, Ismail AF. Recent progress in ionic liquid membranes for gas separation. J. Mol. Liq. 2018;266:330-341. https://doi.org/10.1016/j.molliq.2018.06.081
  9. Tan PC, Ooi BS, Ahmad AL, Low SC. Monomer atomic configuration as key feature in governing the gas transport behaviors of polyimide membrane. J. Appl. Polym. Sci. 2018;135:46073. https://doi.org/10.1002/app.46073
  10. Rosli A, Shoparwe NF, Ahmad AL, Low SC, Lim JK. Dynamic modelling and experimental validation of $CO_2$ removal using hydrophobic membrane contactor with different types of absorbent. Sep. Purif. Technol. 2019;219:230-240. https://doi.org/10.1016/j.seppur.2019.03.030
  11. Rosli A, Ahmad AL, Low SC. Anti-wetting polyvinylidene fluoride membrane incorporated with hydrophobic polyethylene-functionalized-silica to improve $CO_2$ removal in membrane gas absorption. Sep. Purif. Technol. 2019;221:275-285. https://doi.org/10.1016/j.seppur.2019.03.094
  12. Xiao Y, Low BT, Hosseini SS, Chung TS, Paul DR. The strategies of molecular architecture and modification of polyimide-based membranes for $CO_2$ removal from natural gas - A review. Prog. Polym. Sci. 2009;34:561-580. https://doi.org/10.1016/j.progpolymsci.2008.12.004
  13. Li H, Chen V, Hou J, Dong G. Evaluation of $CO_2$ capture with high performance hollow fibre membranes from flue gas: Final report. ANLEC report. Canberra: Cooperative research centre for greenhouse gas technologie; 2015.
  14. Scholes CA, Tao WX, Stevens GW, Kentish SE. Sorption of methane, nitrogen, carbon dioxide, and water in Matrimid 5218. J. Appl. Polym. Sci. 2010;117:2284-2289. https://doi.org/10.1002/app.32148
  15. Wandera D, Wickramasinghe SR, Husson SM. Stimuli-responsive membranes. J. Membr. Sci. 2010;357:6-35. https://doi.org/10.1016/j.memsci.2010.03.046
  16. Brunetti A, Macedonio F, Barbieri G, Drioli E. Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. Environ. Eng. Res. 2015;20:307-328. https://doi.org/10.4491/eer.2015.074
  17. Ohya H, Kudryavtsev VV, Semenova SI. Polyimide membranes:Applications, fabrications, and properties. Tokyo: Kodansha Ltd; 1996.
  18. Kanj AB, Muller K, Heinke L. Stimuli-responsive metal-organic frameworks with photoswitchable azobenzene side groups. Macromol Rapid Commun. 2018;39:1700239. https://doi.org/10.1002/marc.201700239
  19. Kausar A. Research progress in frontiers of poly (ionic liquid)s:A review. Polym. Plast. Technol. Eng. 2017;56:1823-1838. https://doi.org/10.1080/03602559.2017.1289410
  20. He D, Susanto H, Ulbricht M. Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Prog. Polym. Sci. 2009;34:62-98. https://doi.org/10.1016/j.progpolymsci.2008.08.004
  21. Becker D, Konnertz N, Bohning M, Schmidt J, Thomas A. Light-switchable polymers of intrinsic microporosity. Chem. Mater. 2016;28:8523-8529. https://doi.org/10.1021/acs.chemmater.6b02619
  22. Schneemann A, Bon V, Schwedler I, et al. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014;43:6062-6096. https://doi.org/10.1039/C4CS00101J
  23. Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC. Efficacy evaluation of the antifouling magnetite-PES composite membrane through QCM-D and magnetophoretic filtration performances. Sep. Purif. Technol. 2014;132:138-148. https://doi.org/10.1016/j.seppur.2014.05.019
  24. Fan CB, Le Gong L, Huang L, et al. Significant enhancement of $C_2H_/C_2H_4$ separation by a photochromic diarylethene unit:A temperature and light responsive separation switch. Angew. Chem. Int. Ed. 2017;56:7900-7906. https://doi.org/10.1002/anie.201702484
  25. Huang R, Hill MR, Babarao R, Medhekar NV. $CO_2$ Adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks. J. Phys. Chem. C. 2016;120:16658-16667. https://doi.org/10.1021/acs.jpcc.6b03541
  26. Ng QH, Lim JK, Ahmad AL, Ooi BS, Low SC. Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation. J. Membr. Sci. 2015;493:134-146. https://doi.org/10.1016/j.memsci.2015.06.045
  27. Chu L, Xie R, Ju X. Stimuli-responsive membranes: Smart tools for controllable mass-transfer and separation processes. Chin. J. Chem. Eng. 2011;19:891-903. https://doi.org/10.1016/S1004-9541(11)60070-0
  28. Ueki T. Stimuli-responsive polymers in ionic liquids. Polym. J. 2014;46:646-655. https://doi.org/10.1038/pj.2014.37
  29. Bassanetti I, Bracco S, Comotti A, et al. Flexible porous molecular materials responsive to $CO_2$, $CH_4$ and Xe stimuli. J. Mater. Chem. A. 2018;6:14231-14239. https://doi.org/10.1039/C8TA02211A
  30. Gao Q, Xu J, Cao D, Chang Z, Bu X-H. A rigid nested metal-Organic framework featuring a thermoresponsive gating effect dominated by counterions. Angew. Chem. Int. Ed. 2016;55:15027-15030. https://doi.org/10.1002/anie.201608250
  31. Zhang Q, Zhang J, Wan S, Wang W, Fu L. Stimuli-responsive 2D materials beyond graphene. Adv. Funct. Mater. 2018;28:1802500. https://doi.org/10.1002/adfm.201802500
  32. Yanai N, Uemura T, Inoue M, et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property. J. Am. Chem. Soc. 2012;134:4501-4504. https://doi.org/10.1021/ja2115713
  33. Ng QH, Lim JK, Ahmad AL, Low SC. Stability and fouling mechanism of magnetophoretic-actuated PES composite membrane in pH-dependent aqueous medium. J. Membr. Sci. 2016;508:40-50. https://doi.org/10.1016/j.memsci.2016.02.033
  34. Nagarkar SS, Desai AV, Ghosh SK. Stimulus-responsive metal-Organic frameworks. Chem. Asian J. 2014;9:2358-2376. https://doi.org/10.1002/asia.201402004
  35. Knebel A, Sundermann L, Mohmeyer A, et al. Azobenzene guest molecules as light-switchable $CO_2$ valves in an ultrathin UiO-67 membrane. Chem. Mat. 2017;29:3111-3117. https://doi.org/10.1021/acs.chemmater.7b00147
  36. Gui B, Meng Y, Xie Y, et al. Immobilizing organic-based molecular switches into metal-organic frameworks: A promising strategy for switching in solid state. Macromol. Rapid Commun. 2018;39:1700388. https://doi.org/10.1002/marc.201700388
  37. Park J, Yuan D, Pham KT, et al. Reversible alteration of $CO_2$ adsorption upon photochemical or thermal treatment in a metal-Organic framework. J. Am. Chem. Soc. 2012;134:99-102. https://doi.org/10.1021/ja209197f
  38. Weh K, Noack M, Hoffmann K, Schroder K-P, Caro J. Change of gas permeation by photoinduced switching of zeolite-azobenzene membranes of type MFI and FAU. Micropor. Mesopor. Mater. 2002;54:15-26. https://doi.org/10.1016/S1387-1811(02)00331-1
  39. Prasetya N, Ladewig BP. New Azo-DMOF-1 MOF as a photoresponsive low-energy $CO_2$ adsorbent and its exceptional $CO_2$/N2 separation performance in mixed matrix membranes. ACS Appl. Mater. Interfaces. 2018;10:34291-34301. https://doi.org/10.1021/acsami.8b12261
  40. Ma S, Sun D, Wang X-S, Zhou H-C. A mesh-adjustable molecular sieve for general use in gas separation. Angew. Chem. Int. Ed. 2007;46:2458-2462. https://doi.org/10.1002/anie.200604353
  41. Ma S, Sun D, Yuan D, Wang X-S, Zhou H-C. Preparation and gas adsorption studies of three mesh-adjustable molecular sieves with a common structure. J. Am. Chem. Soc. 2009;131:6445-6451. https://doi.org/10.1021/ja808896f
  42. Wriedt M, Sculley JP, Yakovenko AA, et al. Low-energy selective capture of carbon dioxide by a pre-designed elastic single-molecule trap. Angew. Chem. Int. Ed. 2012;51:9804-9808. https://doi.org/10.1002/anie.201202992
  43. Yang CT, Kshirsagar AR, Eddin AC, Lin LC, Poloni R. Tuning gas adsorption by metal node blocking in photoresponsive metal-Organic frameworks. Chem. Eur. J. 2018;24:15167-15172. https://doi.org/10.1002/chem.201804014
  44. Gong LL, Feng XF, Luo F. Novel azo-metal-organic framework showing a 10-connected bct Net, breathing behavior, and unique photoswitching behavior toward $CO_2$. Inorg. Chem. 2015;54:11587-11589. https://doi.org/10.1021/acs.inorgchem.5b02037
  45. Lyndon R, Konstas K, Ladewig BP, et al. Dynamic photo-switching in metal-Organic frameworks as a route to low-energy carbon dioxide capture and release. Angew. Chem. 2013;125:3783-3786. https://doi.org/10.1002/ange.201206359
  46. An W, Aulakh D, Zhang X, et al. Switching of adsorption properties in a zwitterionic metal-Organic framework triggered by photogenerated radical triplets. Chem. Mater. 2016;28:7825-7832. https://doi.org/10.1021/acs.chemmater.6b03224
  47. Ding X, Han B-H. Metallophthalocyanine-based conjugated microporous polymers as highly efficient photosensitizers for singlet oxygen generation. Angew. Chem. 2015;127:6636-6639. https://doi.org/10.1002/ange.201501732
  48. Castellanos S, Goulet-Hanssens A, Zhao F, et al. Structural effects in visible-light-responsive metal-organic frameworks incorporating ortho-fluoroazobenzenes. Chem. Eur. J. 2016;22:746-752. https://doi.org/10.1002/chem.201503503
  49. Tian H, Yang S. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 2004;33:85-97. https://doi.org/10.1039/b302356g
  50. Weh K, Noack M, Ruhmann R, et al. Modification of the transport properties of a polymethacrylate-azobenzene membrane by photochemical switching. Chem. Eng. Technol. 1998;21:408-412. https://doi.org/10.1002/(SICI)1521-4125(199805)21:5<408::AID-CEAT408>3.0.CO;2-L
  51. Fan CB, Liu ZQ, Gong LL, et al. Photoswitching adsorption selectivity in a diarylethene-azobenzene MOF. Chem. Commun. 2017;53:763-766. https://doi.org/10.1039/C6CC08982H
  52. Kameda M, Sumaru K, Kanamori T, Shinbo T. Photoresponse gas permeability of azobenzene-functionalized glassy polymer films. J. Appl. Polym. Sci. 2003;88:2068-2072. https://doi.org/10.1002/app.11980
  53. Li X, Li B, He M, et al. Convenient and robust route to photoswitchable hierarchical liquid crystal polymer stripes via flow-enabled self-assembly. ACS Appl. Mater. Interf. 2018;10:4961-4970. https://doi.org/10.1021/acsami.7b16001
  54. Zhu Y, Zhang W. Reversible tuning of pore size and $CO_2$ adsorption in azobenzene functionalized porous organic polymers. Chem. Sci. 2014;5:4957-4961. https://doi.org/10.1039/C4SC02305F
  55. Nicoletta FP, Cupelli D, Formoso P, et al. Light responsive polymer membranes: A review. Membranes 2012;2:134-197. https://doi.org/10.3390/membranes2010134
  56. Klajn R. Immobilized azobenzenes for the construction of photoresponsive materials. Pure Appl. Chem. 2010;82:2247-2279. https://doi.org/10.1351/PAC-CON-10-09-04
  57. Modrow A, Zargarani D, Herges R, Stock N. Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH 2 by covalent post-synthetic modification. Dalton Trans. 2012;41:8690-8696. https://doi.org/10.1039/c2dt30672g
  58. Luo F, Fan CB, Luo MB, et al. Photoswitching $CO_2$ capture and release in a photochromic diarylethene metal-organic framework. Angew. Chem. Int. Ed. 2014;53:9298-9301. https://doi.org/10.1002/anie.201311124
  59. Irie M. Diarylethenes for memories and switches. Chem. Rev. 2000;100:1685-1716. https://doi.org/10.1021/cr980069d
  60. Healey K, Liang W, Southon PD, Church TL, D'Alessandro DM. Photoresponsive spiropyran-functionalised MOF-808: Postsynthetic incorporation and light dependent gas adsorption properties. J. Mater. Chem. A. 2016;4:10816-10819. https://doi.org/10.1039/C6TA04160D
  61. Minkin VI. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem. Rev. 2004;104:2751-2776. https://doi.org/10.1021/cr020088u
  62. Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 2000;100:1741-1754. https://doi.org/10.1021/cr9800715
  63. Huang N, Ding X, Kim J, Ihee H, Jiang D. A photoresponsive smart covalent organic framework. Angew. Chem. Int. Ed. 2015;54:8704-8707. https://doi.org/10.1002/anie.201503902
  64. Li H, Sadiq MM, Suzuki K, et al. MaLISA - A cooperative method to release adsorbed gases from metal-organic frameworks. J. Mater. Chem. A. 2016;4:18757-18762. https://doi.org/10.1039/C6TA09826F
  65. Coudert Fo-X. Responsive metal-Organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 2015;27:1905-1916. https://doi.org/10.1021/acs.chemmater.5b00046
  66. Dang L-L, Zhang X-J, Zhang L, et al. Photo-responsive azo MOF exhibiting high selectivity for $CO_2$ and xylene isomers. J. Coord. Chem. 2016;69:1179-1187. https://doi.org/10.1080/00958972.2016.1166359
  67. Hermann D, Emerich H, Lepski R, Schaniel D, Ruschewitz U. Metal-organic frameworks as hosts for photochromic guest molecules. Inorg. Chem. 2013;52:2744-2749. https://doi.org/10.1021/ic302856b
  68. Li H, Martinez MR, Perry Z, et al. A robust metal-Organic framework for dynamic light-induced swing adsorption of carbon dioxide. Chem. Eur. J. 2016;22:11176-11179. https://doi.org/10.1002/chem.201602671
  69. Zhang J, Wang L, Li N, et al. A novel azobenzene covalent organic framework. Cryst. Eng. Commun. 2014;16:6547-6551. https://doi.org/10.1039/C4CE00369A
  70. Tang H, Lu D, Wu C. Intramolecular hydrogen bonds enhance disparity in reactivity between isomers of photoswitchable sorbents and $CO_2$: A computational study. Chem. Phys. Chem. 2015;16:1926-1932. https://doi.org/10.1002/cphc.201500164
  71. Ulbricht M. Advanced functional polymer membranes. Polymer 2006;47:2217-2262. https://doi.org/10.1016/j.polymer.2006.01.084
  72. Wang Z, Knebel A, Grosjean S, et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 2016;7:13872. https://doi.org/10.1038/ncomms13872
  73. Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. J. Am. Chem. Soc. 2018;140:10094-10098. https://doi.org/10.1021/jacs.8b05136
  74. Duan K, Wang J, Zhang Y, Liu J. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective $CO_2/N_2$ separation. J. Membr. Sci. 2019;572:588-595. https://doi.org/10.1016/j.memsci.2018.11.054
  75. Shan M, Seoane B, Andres-Garcia E, Kapteijn F, Gascon J. Mixed-matrix membranes containing an azine-linked covalent organic framework: Influence of the polymeric matrix on post-combustion $CO_2$-capture. J. Membr. Sci. 2018;549:377-384. https://doi.org/10.1016/j.memsci.2017.12.008
  76. Muller K, Knebel A, Zhao F, et al. Switching thin films of azobenzene-containing metal-organic frameworks with visible light. Chem. Eur. J. 2017;23:5434-5438. https://doi.org/10.1002/chem.201700989
  77. Prasetya N, Teck AA, Ladewig BP. Matrimid-JUC-62 and Matrimid-PCN-250 mixed matrix membranes displaying light-responsive gas separation and beneficial ageing characteristics for $CO_2/N_2$ separation. Sci. Rep. 2018;8:2944. https://doi.org/10.1038/s41598-018-21263-7

피인용 문헌

  1. A review and future prospect of polymer blend mixed matrix membrane for CO2 separation vol.26, pp.12, 2020, https://doi.org/10.1007/s10965-019-1978-z