DOI QR코드

DOI QR Code

A Convergent Investigation on the thermal and stress analyses of CPU Cooler

CPU 쿨러의 열 및 응력 해석에 관한 융합 연구

  • Choi, Kye-Kwang (Department of Metal Mold Design Engineering, Kongju national University) ;
  • Cho, Jae-Ung (Division of Mechanical & Automotive Engineering, Kongju National University)
  • 최계광 (공주대학교 금형설계공학과) ;
  • 조재웅 (공주대학교 기계자동차공학부)
  • Received : 2020.05.11
  • Accepted : 2020.08.20
  • Published : 2020.08.28

Abstract

In this study, the thermal and stress analyses were performed by applying a temperature condition of 100℃ at CPU cooler model. The value of heat flux value is shown to be the most at the lower rod area. The upper part becomes, the smaller the heat flow rate. The highest temperature is shown at the bottom of the CPU cooler model. Overall, the upper part becomes, the smaller the temperature becomes. Based on the temperature analysis, the thermal deformation caused by expansion, the deformation becomes smaller as the upper part of the overlapping plates. The great deformation happens at the bent area of the small rod as the lower part of model and the least deformation is shown at the lowest floor of model. In addition, the maximum thermal stress of 570.63 MPa happens at the floor below model. The stress is shown to decrease as the upper part of the overlapping plates becomes. But the stress is shown to increase somewhat at the middle part of model. By applying the study result on the thermal and stress analyses of CPU cooler, this study is seen to be suitable for the aesthetic convergence.

본 연구에서는 CPU쿨러 모델에서 100℃의 온도 조건을 가하여서 열 및 응력 해석을 하였다. 열유속의 값은 아래쪽 봉 부분에서 가장 많고 전반적으로 위쪽 부분으로 갈수록 열유속이 작아짐을 볼 수 있다. CPU 쿨러 모델의 제일 바닥에 있는 면에서 제일 높음을 알 수 있고 전반적으로 위쪽 부분으로 갈수록 온도는 작아짐을 볼 수 있다. 온도 해석을 기반으로 열팽창으로 인한 열변형은 겹판들의 위부분으로 갈수록 변형량이 작아짐을 알 수 있고, 모델의 아래부분으로 작은 봉의 휘어진 부분에서 변형량이 많이 발생하고 모델 맨 아래의 바닥면에서는 변형량이 가장 작음을 볼 수 있다. 또한 열응력은 아래의 바닥면에서 570.63 MPa의 최대 열응력이 발생하고 있다. 겹판들의 위부분으로 갈수록 응력이 작아짐을 알 수 있으나, 모델의 중앙부분에서는 그 응력이 다소 높아짐음을 볼 수 있다. CPU 쿨러의 열 및 응력에 대한 연구결과를 적용함으로서, 본 연구가 미적인 융합에 적합된다고 보인다.

Keywords

References

  1. J. W. Choi & D. G. Kwag. (2019). A Study on the Thermal Analysis of the Valve in the Selective Catalytic Reduction(SCR) System. Journal of the Korea Convergence Society, 10(8), 153-158. DOI : 10.15207/JKCS.2019.10.8.153
  2. G. G. Choi & J. U. Cho. (2017). Convergence Study due to the Configuration of Radiant Heat Panel of Automotive LED Heat Lamp. Journal of the Korea Convergence Society, 8(3), 199-204. DOI : 10.15207/JKCS.2017.8.3.199
  3. H. H, Hyeon, B. H, Jeong, J. W. Kim & K. Y. Lee. (2019). A Comparison of Performance on the Orthogonal and Refraction Heat Exchanger Shape in Air Ventilation System. Journal of the Korea Convergence Society, 10(7), 281-287. DOI : 10.15207/JKCS.2019.10.7.281
  4. S. C. Han & B. G. Lee. (2018). A Study on Convergence Contact Behavior of Friction Heat and Pad on Disk Brake. Journal of the Korea Convergence Society, 9(1), 283-289. DOI : 10.15207/JKCS.2018.9.1.283
  5. J. H. Lee & J. U. Cho. (2015). Convergence Technique Study through Simulation Thermal Analysis due to the Shape of Electric Heater. Journal of the Korea Convergence Society, 6(6), 241-246. DOI : 10.15207/JKCS.2015.6.6.241
  6. G. G. Choi & J. U. Cho. (2019). Convergence Study on the Thermal Stress According to the Structure of Automotive Heating Seat. Journal of the Korea Convergence Society, 10(7), 169-174. DOI : 10.15207/JKCS.2019.10.7.169
  7. J. L. Cui, M. H. Chey & S. I. Kim. (2016). Seismic Performance of Urban Structures with Various Horizontal Irregularities using Equivalent Static Analysis. Journal of Convergence for Information Technology, 6(1), 25-32. DOI : 10.22156/CS4SMB.2016.6.1.025
  8. W. B. Lee, S. H. Ryu, W. Y. Hao & B. P. Kyung. (2015). Dismantling Simulation of Nuclear Reactor Using Partial Mesh Cutting Method for 3D Model. Journal of Digital Convergence, 13(4), 303-310. DOI : 10.14400/JDC.2015.13.4.303
  9. C. S. Won, N. K. Hur & S. H. Kwon. (2013). Flow Analysis of Automotive Oil Pump of Gerotor Type. The KSFM Journal of Fluid Machinery, 6(4), 7-13. DOI : 10.5293/KFMA.2003.6.4.007
  10. C. H. Choi, J. G. Noh & J. H. Kim. (2010). Numerical Simulation of Cavitating Flow Around Turbopump Inducer. The KSFM Journal of Fluid Machinery, 13(3), 49-53. DOI : 10.5293/KFMA.2010.13.3.049
  11. S. H. Jo, J. I. Park & K. W. Nam. (2006). Numerical Simulation in the IC Engine Lubricating Gerotor Oil Pump. Transactions of the Korean Society of Mechanical Engineers B, 30(10), 1019-1025. DOI : 10.3795/KSME-B.2006.30.10.1019
  12. S. H. Lee & N. K. Hur. (2007). Numerical Study on Effects of Design Factors on Flow Characteristics of a Vane Pump. The KSFM Journal of Fluid Machinery, 10(6), 24-31. DOI : 10.5293/KFMA.2007.10.6.024
  13. D. R. Lee. (2015). Flow Analysis of a Thermopneumatic Micropump For Different Shapes of PDMS Membrane. Journal of the Korean Society of Mechanical Technology, 17(2), 245-250. DOI : 10.17958/ksmt.17.2.201504.245
  14. J. U. Cho. (2012). Flow analysis of air due to the shapes of motorbike. Journal of Korean Society of Mechanical Technology, 14(1), 53-60. DOI : 10.17958/ksmt.14.1.201202.53
  15. J. N. Park. (2013). A Study on the Flow Control Forming Process and Experiment Device of Drum Clutch for Automatic Transmission. Journal of the Korean Society of Manufacturing Process Engineers, 12(6), 69-76. DOI : 10.14775/ksmpe.2013.12.6.069
  16. M. R. Kim, S. J. Lee, L. Li & D. W. Lee. (2016). A study on lubrication Properties of a Dimple Pattern using an Average Flow Analysis with a Contact Model of Asperities. Journal of the Korean Society of Manufacturing Process Engineers, 15(6), 41-49. DOI : 10.14775/ksmpe.2016.15.6.041