References
- Ludovic Malfait, Jens Berger, and Martin Kastner, "P.563 -The ITU-T standard for single-ended speech quality assessment," IEEE Transactions on Audio, Speech, and Language Processing 14.6, pp.1924-1934, 2006. DOI: 10.1109/TASL.2006.883177
- C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, "An algorithm for intelligibility prediction of time-frequency weighted noisy speech," IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2125- 2136, 2011. DOI: https://www.doi.org/10.1109/TASL.2011.2114881
- Dushyant Sharma, Yu Wang, Patrick A. Naylor, Mike Brookes, "A data-driven non-intrusive measure of speech quality and intelligibility," Speech Communication, vol. 80, June 2016, pp. 84-94, June 2016. DOI: https://doi.org/10.1016/j.specom.2016.03.005
- A. H. Andersen, J. M. de Haan, Z. tan and J. Jensen, "Nonintrusive Speech Intelligibility Prediction Using Convolutional Neural Networks," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 10, pp. 1925-1939, Oct. 2018. DOI: 10.1109/TASLP.2018.2847459
- Anderson R. Avila, Hannes Gamper, Chandan Reddy, Ross Cutler, Ivan Tashev, and Johannes Gehrke, "Nonintrusive Speech Quality Assessment Using Neural Networks," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 18777982, May 2019. DOI: 10.1109/ICASSP.2019.8683175
- D. K. Yun, H. N. Lee, and S. H. Choi, "A Deep Learning-Based Approach to Non-Intrusive Speech Intelligibility Estimation," IEICE Trans. Information and Systems, pp. 1207-1208, Apr. 2018. DOI: 10.1587/transinf.2017EDL8225
- Y. H. Kim, D. K. Yun, H. N. Lee, and S. H. Choi, "A Non-Intrusive Speech Intelligibility Estimation Method Based on Deep Learning Using Autoencoder Features" IEICE Trans. Information and Systems, Vol.E103-D No.3, March. 2020. DOI: 10.1587/transinf.2019EDL8150
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997. DOI: 10.1162/neco.1997.9.8.1735
- Hasim Sak, Andrew W. Senior, and Françoise Beaufays, "Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling models," Proc. INTERSPEECH, pp. 338-342, 2014.
- Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramab, "Auto-encoder bottleneck features using deep belief networks," Proc. ICASSP, pp. 4153-4156, 2012. DOI: 10.1109/ICASSP.2012.6288833
- V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," Proc. of the 27th international conference on machine learning (ICML-10), pp. 807-814. 2010. DOI: https://dl.acm.org/citation.cfm?id=3104425
- Diederik P. Kingma and Jimmy Ba, "Adam: A method for stochastic optimization," arXiv preprint arXiv:1412.6980, 2014. DOI: https://arxiv.org/abs/1412.6980
- J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, "DARPA TIMIT acoustic phonetic continuous speech corpus CDROM," NIST, 1993.