DOI QR코드

DOI QR Code

Systematic Review on Application of Whey Towards Production of Galacto-oligosaccharide Using β-Galactosidase Enzyme from Pichia pastoris

  • Ramachandran, C (Department of Food Science and Biotechnology, Kangwon National University) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, Kangwon National University)
  • 투고 : 2020.07.01
  • 심사 : 2020.08.26
  • 발행 : 2020.08.30

초록

Galacto-oligosaccharides(GOS)는 프로바이오틱스 미생물의 성장을 증진시켜 인류 건강에 유익한 작용을 갖게 하는 프리바이오틱스이며 식품 산업에서 다양한 활용성을 갖는다. GOS는 보통 β-galactosidase에 의해 촉매 반응이 일어난 lactose로부터 생성된다. 한편, 세포 표면 발현은 살아있는 세포 표면의 펩타이드와 단백질을 세포의 기능성 성분에 융합시켜 발현시키는 것이다. 표층 발현 세포는 다양한 잠재적 이용가치를 갖는다. N 말단 부근에 위치하는 것으로 생각되는 Flo1p 응집 functional domain은 세포의 flocs로의 가역적인 응집을 유발하면서 α-mannan carbohydrates와 같은 세포벽 성분과 비공유결합을 한다. 한외여과한 유청을 농축, 분무건조한 유청막투과액(Whey Permeate, WP)을 이용하여 β-galactosidase 재조합 Pichia pastoris (P. pastoris) 로 표층 발현 처리 (surface engineering)하는 GOS의 합성법은 폐기물을 활용하는 새로운 효율적인 방법이라 할 수 있다.

Galacto-oligosaccharides (GOS) are prebiotics that have a beneficial effect on human health by promoting the growth of probiotic bacteria in the gut, in addition to having various applications in the food industry. GOS are generally produced from lactose in a reaction catalyzed by β-galactosidase. Synthesis of GOS from whey permeate (WP) (ultrafiltration of whey, concentrated then spray dried) using surface engineered β-galactosidase in Pichia pastoris (P. pastoris) is a novel method to convert waste into a valuable product. Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them to functional components of cells. Surface engineered cells have many potential uses. The Flo1p flocculation functional domain, thought to be located near the N terminus, recognizes and adheres non-covalently to cell-wall components such as α-mannan carbohydrates, causing reversible aggregation of cells into flocs.

키워드

참고문헌

  1. Vandenplas, Y., Zakharova, I., Dmitrieva, Y., Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br. J. Nutr., 113(9), 1339-1344 (2015). https://doi.org/10.1017/S0007114515000823
  2. Sangwan, V., Tomar, S.K., Singh, R.R.B., Singh, A.K., Ali, B., Galacto-oligosaccharides: novel components of designer foods. Journal of Food Science, 76(4), R103-R111 (2011). https://doi.org/10.1111/j.1750-3841.2011.02131.x
  3. Splechtna, B., Nguyen, T.H., Steinböck, M., Kulbe, K.D., Lorenz, W., & Haltrich, D., Production of prebiotic galactooligosaccharides from lactose using ${\beta}$-galactosidases from Lactobacillus reuteri. J. Agric. Food Chem., 54(14), 4999-5006 (2006). https://doi.org/10.1021/jf053127m
  4. Park, A.R., Oh, D.K., Galacto-oligosaccharide production using microbial ${\beta}$-galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol., 85(5), 1279-1286 (2010). https://doi.org/10.1007/s00253-009-2356-2
  5. Urrutia, P., Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A.O., Wilson, L., Illanes, A., Plou, F.J., Detailed analysis of galacto-oligosaccharides synthesis with ${\beta}$-galactosidase from Aspergillus oryzae. J. Agric. Food Chem., 61(5), 1081-1087 (2013). https://doi.org/10.1021/jf304354u
  6. Carevic, M., Corovic, M., Mihailovic, M., Banjanac, K., Milisavljevic, A., Velickovic, D., Bezbradica, D., Galactooligosaccharide synthesis using chemically modified ${\beta}$-galactosidase from Aspergillus oryzae immobilised onto macroporous amino resin. Int. Dairy J., 54, 50-57 (2016). https://doi.org/10.1016/j.idairyj.2015.10.002
  7. Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y., Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv., 33(6), 756-774 (2015). https://doi.org/10.1016/j.biotechadv.2015.07.002
  8. Patel, S.R., Murthy, Z.P., Waste valorization: Recovery of lactose from partially deproteinated whey by using acetone as anti-solvent. Dairy Sci. Technol., 91(1), 53-63 (2011).
  9. Wang, W., Bao, Y., Hendricks, G.M., Guo, M., Consistency, microstructure and probiotic survivability of goats' milk yoghurt using polymerized whey protein as a co-thickening agent. Int. Dairy J., 24(2), 113-119 (2012). https://doi.org/10.1016/j.idairyj.2011.09.007
  10. Tamime, A.Y., 2009. Milk Processing and Quality Management. John Wiley & Sons, Scotland, UK, pp. 4-344.
  11. Allen, M.D., A comparison of analytical methods for quantifying denatured whey proteins and their correlation to solubility. Master's thesis, California Polytechnic State University, San Luis Obispo, CA, USA (2010).
  12. Joseph, M., Alavi, S., Johnson, Q., Walton, S., Webb, P., Enhancing the nutrient bioavailability of food aid products. A Report from the Food Aid Quality Review, Boston, United States Agency for International Development (USAID, MA: Tufts University), (2019).
  13. Macwan, S.R., Dabhi, B.K., Parmar, S.C., Hati, S., Prajapatiw, S., Aparnathi, K.D., Development of fermented dairy products from lactic acid bacterial biomass grown in whey based medium. Int. J. Fermented Foods, 7(1), 45-54 (2018).
  14. Law, B.A., Tamime, A.Y., 2011. Technology of Cheese Making (Vol. 18). John Wiley & Sons, Scotland, United Kingdom, p. 512.
  15. Kumar, K., Singh, J., Chandra, S., Formulation of whey based pineapple herbal beverages and its storage conditions. Chem. Sci. Rev. Lett., 6(21), 198-203 (2017).
  16. Almeida, K.E., Tamime, A.Y., Oliveira, M.N., Influence of total solids contents of milk whey on the acidifying profile and viability of various lactic acid bacteria. LWT., 42(2), 672-678 (2009). https://doi.org/10.1016/j.lwt.2008.03.013
  17. Domingues, L., Lima, N., Teixeira, J.A., Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Biotechnol. Bioeng., 72(5), 507-514 (2001). https://doi.org/10.1002/1097-0290(20010305)72:5<507::AID-BIT1014>3.0.CO;2-U
  18. Guimaraes, P.M., Teixeira, J.A., Domingues, L., Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv., 28(3), 375-384 (2010). https://doi.org/10.1016/j.biotechadv.2010.02.002
  19. Kondepudi, K.K., Ambalam, P., Nilsson, I., Wadstr, T., Prebiotic-non-digestible oligosaccharides preference of probiotic Bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe, 18(5), 489-497 (2012). https://doi.org/10.1016/j.anaerobe.2012.08.005
  20. Garcia-Cayuela, T., Diez-Municio, M., Herrero, M., Martinez-Cuesta, M.C., Pelaez, C., Requena, T., Moreno, F.J., Selective fermentation of potential prebiotic lactosederived oligo-saccharides by probiotic bacteria. Int. Dairy J., 38(1), 11-15 (2014). https://doi.org/10.1016/j.idairyj.2014.03.012
  21. Lamsal, B.P., Production, health aspects and potential food uses of dairy prebiotic galacto-oligosaccharides. J. Sci. Food Agric., 92(10), 2020-2028 (2012). https://doi.org/10.1002/jsfa.5712
  22. Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., Eubanks, S., Harris, M., Pappas, T.N., Takahashi, T., Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284(5), R1269-R1276 (2003). https://doi.org/10.1152/ajpregu.00442.2002
  23. Hopkins, M.J., Macfarlane, G.T., Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Appl. Environ. Microbiol., 69(4), 1920-1927 (2003). https://doi.org/10.1128/AEM.69.4.1920-1927.2003
  24. Buddington, R.K., Kelly-Quagliana, K., Buddington, K.K., Kimura, Y., Non-digestible oligo-saccharides and defense functions: lessons learned from animal models. Br. J. Nutr., 87(S2), S231-S239 (2002). https://doi.org/10.1079/BJN/2002542
  25. Denny, P.C., Denny, P.A., Takashima, J., Si, Y., Navazesh, M., Galligan, J.M., A novel saliva test for caries risk assessment. J. Calif. Dent. Assoc., 34(4), 287 (2006).
  26. Patel, S., Goyal, A., Functional oligosaccharides: production, properties and applications. World J. Microbiol. Biotechnol., 27(5), 1119-1128 (2011). https://doi.org/10.1007/s11274-010-0558-5
  27. Gobinath, D., Madhu, A.N., Prashant, G., Srinivasan, K., Prapulla, S.G., Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. Br. J. Nutr., 104(1), 40-47 (2010). https://doi.org/10.1017/S0007114510000243
  28. Ilyas, R., Wallis, R., Soilleux, E.J., Townsend, P., Zehnder, D., Tan, B.K., Sim, R.B., Lehnert, H., Randeva, H.S., Mitchell, D.A., High glucose disrupts oligo-saccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in Diabetes mellitus. Immunobiology, 216(1-2), 126-131 (2011). https://doi.org/10.1016/j.imbio.2010.06.002
  29. Zhang, J., Yu, Y., Zhang, Z., Ding, Y., Dai, X., Li, Y., Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. Int. Immunopharmacol., 11(12), 2251-2257 (2011). https://doi.org/10.1016/j.intimp.2011.09.019
  30. Wang, N., Yang, J., Lu, J., Qiao, Q., Wu, T., Du, X., Bao, G., He, X., A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats. Carbohydr. Polym., 111, 47-55 (2014). https://doi.org/10.1016/j.carbpol.2014.04.061
  31. Lemieszek, M., Rzeski, W., Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp. Oncol., 16(4), 285 (2012).
  32. Fedorov, S.N., Ermakova, S.P., Zvyagintseva, T.N., Stonik, V.A., Anticancer and cancer preventive properties of marine polysaccharides: Some results and prospects. Mar. Drugs, 11(12), 4876-4901 (2013). https://doi.org/10.3390/md11124876
  33. Sanjeewa, K.A., Lee, J.S., Kim, W.S., Jeon, Y.J., The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr. Polym., 177, 451-459 (2017). https://doi.org/10.1016/j.carbpol.2017.09.005
  34. Borai, I.H., Ezz, M.K., Rizk, M.Z., Matloub, A.A., Aly, H.F., El, A., Farrag, R., Fouad, G.I., Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata. Int. J. Pharm. Sci. Rev. Res, 31(1), 1-12 (2015).
  35. Ren, S., Newby, D., Li, S.C., Walkom, E., Miller, P., Hure, A., Attia, J., Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart, 2(1), e000247 (2015). https://doi.org/10.1136/openhrt-2015-000247
  36. Li, H., Zhang, M., Ma, G., Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition, 26(5), 556-562 (2010). https://doi.org/10.1016/j.nut.2009.06.009
  37. Zhang, S., Zhang, Q., Zhang, D., Wang, C., Yan, C., Antiosteoporosis activity of a novel Achyranthes bidentata polysaccharide via stimulating bone formation. Carbohydr. Polym., 184, 288-298 (2018). https://doi.org/10.1016/j.carbpol.2017.12.070
  38. Mussatto, S.I., Mancilha, I.M., Non-digestible oligosaccharides: a review. Carbohydr. Polym., 68(3), 587-597 (2007). https://doi.org/10.1016/j.carbpol.2006.12.011
  39. Asraf, S.S., Gunasekaran, P., 2010. Current trends of sgalactosidase research and application. Current Research, Technology and Education Topics In Applied Microbiology And Microbial Biotechnology. Microbiology Book Series Formatex Research Center, Badajoz, Spain, pp. 880-890.
  40. El-Sayed, M.M., Chase, H.A., Trends in whey protein fractionation. Biotechnol. Lett., 33(8), 1501-1511 (2011). https://doi.org/10.1007/s10529-011-0594-8
  41. Yang, S., Hai, F.I., Nghiem, L.D., Price, W.E., Roddick, F., Moreira, M.T., Magram, S.F., Understanding the factors controlling the removal of trace organic contaminants by whiterot fungi and their lignin modifying enzymes: a critical review. Bioresour. Technol., 141, 97-108 (2013). https://doi.org/10.1016/j.biortech.2013.01.173
  42. Serebriiskii, I.G., Golemis, E.A., Uses of lacZ to study gene function: evaluation of ${\beta}$-galactosidase assays employed in the yeast two-hybrid system. Anal. Biochem., 285(1), 1-15 (2000). https://doi.org/10.1006/abio.2000.4672
  43. Torres, D.P., Gonçalves, M.D.P.F., Teixeira, J.A., Rodrigues, L.R., Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf., 9(5), 438-454 (2010). https://doi.org/10.1111/j.1541-4337.2010.00119.x
  44. Lu, L.L., Xiao, M., Li, Z.Y., Li, Y.M., Wang, F.S., A novel transglycosylating ${\beta}$-galactosidase from Enterobacter cloacae B5. Process Biochem., 44(2), 232-236 (2009). https://doi.org/10.1016/j.procbio.2008.10.010
  45. Ito, M., Deguchi, Y., Miyamori, A., Matsumoto, K., Kikuchi, H., Matsumoto, K., Kobayashi, Y., Yajima, T., Kan, T., Effects of administration of galacto-oligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microb. Ecol. Health Dis., 3(6), 285-292 (1990). https://doi.org/10.3109/08910609009140251
  46. Coughlan, L.M., Cotter, P.D., Hill, C., Alvarez-Ordonez, A., Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front. Microbiol., 6, 672 (2015).
  47. Fanaro, S., Boehm, G., Garssen, J., Knol, J., Mosca, F., Stahl, B., & Vigi, V. Galacto-oligosaccharides and long-chain fructo?oligosaccharides as prebiotics in infant formulas: A review. Acta paediatr., 94, 22-26 (2005). https://doi.org/10.1111/j.1651-2227.2005.tb02150.x
  48. Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y., Zhou, X., Song, Z., Cai, M., Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci. Rep., 7, 41850 (2017). https://doi.org/10.1038/srep41850
  49. Calik, P., Ata, O., Gunes, H., Massahi, A., Boy, E., Keskin, A., Ozturk, S., Zerze, G.H. Ozdamar, T.H., Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem. Eng. J., 95, 20-36 (2015). https://doi.org/10.1016/j.bej.2014.12.003
  50. Zhang, A.L., Luo, J.X., Zhang, T.Y., Pan, Y.W., Tan, Y.H., Fu, C.Y., Tu, F.Z., Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol. Biol. Rep., 36(6), 1611-1619 (2009). https://doi.org/10.1007/s11033-008-9359-4
  51. Bollok, M., Resina, D., Valero, F., Ferrer, P., Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production. Recent Pat. Biotechnol., 3(3), 192-201 (2009). https://doi.org/10.2174/187220809789389126
  52. Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., Cregg, J.M., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186(1), 37-44 (1997). https://doi.org/10.1016/S0378-1119(96)00675-0
  53. Roach, P., Parker, T., Gadegaard, N., Alexander, M.R., Surface strategies for control of neuronal cell adhesion: a review. Surf. Sci. Rep., 65(6), 145-173 (2010). https://doi.org/10.1016/j.surfrep.2010.07.001
  54. Di Gianvito, P., Tesniere, C., Suzzi, G., Blondin, B., Tofalo, R., FLO 5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci. Rep., 7(1), 1-12 (2017). https://doi.org/10.1038/s41598-016-0028-x
  55. Goossens, K., Willaert, R., Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol. Lett., 32(11), 1571-1585 (2010). https://doi.org/10.1007/s10529-010-0352-3
  56. Domingo, J.L., Stationary phase-specific expression of dominant flocculation genes for controlled flocculation of yeast. PhD thesis: Stellenbosch University, Stellenbosch, Republic of South Africa (2003).