참고문헌
- Vandenplas, Y., Zakharova, I., Dmitrieva, Y., Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Br. J. Nutr., 113(9), 1339-1344 (2015). https://doi.org/10.1017/S0007114515000823
- Sangwan, V., Tomar, S.K., Singh, R.R.B., Singh, A.K., Ali, B., Galacto-oligosaccharides: novel components of designer foods. Journal of Food Science, 76(4), R103-R111 (2011). https://doi.org/10.1111/j.1750-3841.2011.02131.x
-
Splechtna, B., Nguyen, T.H., Steinböck, M., Kulbe, K.D., Lorenz, W., & Haltrich, D., Production of prebiotic galactooligosaccharides from lactose using
${\beta}$ -galactosidases from Lactobacillus reuteri. J. Agric. Food Chem., 54(14), 4999-5006 (2006). https://doi.org/10.1021/jf053127m -
Park, A.R., Oh, D.K., Galacto-oligosaccharide production using microbial
${\beta}$ -galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol., 85(5), 1279-1286 (2010). https://doi.org/10.1007/s00253-009-2356-2 -
Urrutia, P., Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A.O., Wilson, L., Illanes, A., Plou, F.J., Detailed analysis of galacto-oligosaccharides synthesis with
${\beta}$ -galactosidase from Aspergillus oryzae. J. Agric. Food Chem., 61(5), 1081-1087 (2013). https://doi.org/10.1021/jf304354u -
Carevic, M., Corovic, M., Mihailovic, M., Banjanac, K., Milisavljevic, A., Velickovic, D., Bezbradica, D., Galactooligosaccharide synthesis using chemically modified
${\beta}$ -galactosidase from Aspergillus oryzae immobilised onto macroporous amino resin. Int. Dairy J., 54, 50-57 (2016). https://doi.org/10.1016/j.idairyj.2015.10.002 - Yadav, J.S.S., Yan, S., Pilli, S., Kumar, L., Tyagi, R.D., Surampalli, R.Y., Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol. Adv., 33(6), 756-774 (2015). https://doi.org/10.1016/j.biotechadv.2015.07.002
- Patel, S.R., Murthy, Z.P., Waste valorization: Recovery of lactose from partially deproteinated whey by using acetone as anti-solvent. Dairy Sci. Technol., 91(1), 53-63 (2011).
- Wang, W., Bao, Y., Hendricks, G.M., Guo, M., Consistency, microstructure and probiotic survivability of goats' milk yoghurt using polymerized whey protein as a co-thickening agent. Int. Dairy J., 24(2), 113-119 (2012). https://doi.org/10.1016/j.idairyj.2011.09.007
- Tamime, A.Y., 2009. Milk Processing and Quality Management. John Wiley & Sons, Scotland, UK, pp. 4-344.
- Allen, M.D., A comparison of analytical methods for quantifying denatured whey proteins and their correlation to solubility. Master's thesis, California Polytechnic State University, San Luis Obispo, CA, USA (2010).
- Joseph, M., Alavi, S., Johnson, Q., Walton, S., Webb, P., Enhancing the nutrient bioavailability of food aid products. A Report from the Food Aid Quality Review, Boston, United States Agency for International Development (USAID, MA: Tufts University), (2019).
- Macwan, S.R., Dabhi, B.K., Parmar, S.C., Hati, S., Prajapatiw, S., Aparnathi, K.D., Development of fermented dairy products from lactic acid bacterial biomass grown in whey based medium. Int. J. Fermented Foods, 7(1), 45-54 (2018).
- Law, B.A., Tamime, A.Y., 2011. Technology of Cheese Making (Vol. 18). John Wiley & Sons, Scotland, United Kingdom, p. 512.
- Kumar, K., Singh, J., Chandra, S., Formulation of whey based pineapple herbal beverages and its storage conditions. Chem. Sci. Rev. Lett., 6(21), 198-203 (2017).
- Almeida, K.E., Tamime, A.Y., Oliveira, M.N., Influence of total solids contents of milk whey on the acidifying profile and viability of various lactic acid bacteria. LWT., 42(2), 672-678 (2009). https://doi.org/10.1016/j.lwt.2008.03.013
- Domingues, L., Lima, N., Teixeira, J.A., Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells. Biotechnol. Bioeng., 72(5), 507-514 (2001). https://doi.org/10.1002/1097-0290(20010305)72:5<507::AID-BIT1014>3.0.CO;2-U
- Guimaraes, P.M., Teixeira, J.A., Domingues, L., Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnol. Adv., 28(3), 375-384 (2010). https://doi.org/10.1016/j.biotechadv.2010.02.002
- Kondepudi, K.K., Ambalam, P., Nilsson, I., Wadstr, T., Prebiotic-non-digestible oligosaccharides preference of probiotic Bifidobacteria and antimicrobial activity against Clostridium difficile. Anaerobe, 18(5), 489-497 (2012). https://doi.org/10.1016/j.anaerobe.2012.08.005
- Garcia-Cayuela, T., Diez-Municio, M., Herrero, M., Martinez-Cuesta, M.C., Pelaez, C., Requena, T., Moreno, F.J., Selective fermentation of potential prebiotic lactosederived oligo-saccharides by probiotic bacteria. Int. Dairy J., 38(1), 11-15 (2014). https://doi.org/10.1016/j.idairyj.2014.03.012
- Lamsal, B.P., Production, health aspects and potential food uses of dairy prebiotic galacto-oligosaccharides. J. Sci. Food Agric., 92(10), 2020-2028 (2012). https://doi.org/10.1002/jsfa.5712
- Fukumoto, S., Tatewaki, M., Yamada, T., Fujimiya, M., Mantyh, C., Voss, M., Eubanks, S., Harris, M., Pappas, T.N., Takahashi, T., Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284(5), R1269-R1276 (2003). https://doi.org/10.1152/ajpregu.00442.2002
- Hopkins, M.J., Macfarlane, G.T., Nondigestible oligosaccharides enhance bacterial colonization resistance against Clostridium difficile in vitro. Appl. Environ. Microbiol., 69(4), 1920-1927 (2003). https://doi.org/10.1128/AEM.69.4.1920-1927.2003
- Buddington, R.K., Kelly-Quagliana, K., Buddington, K.K., Kimura, Y., Non-digestible oligo-saccharides and defense functions: lessons learned from animal models. Br. J. Nutr., 87(S2), S231-S239 (2002). https://doi.org/10.1079/BJN/2002542
- Denny, P.C., Denny, P.A., Takashima, J., Si, Y., Navazesh, M., Galligan, J.M., A novel saliva test for caries risk assessment. J. Calif. Dent. Assoc., 34(4), 287 (2006).
- Patel, S., Goyal, A., Functional oligosaccharides: production, properties and applications. World J. Microbiol. Biotechnol., 27(5), 1119-1128 (2011). https://doi.org/10.1007/s11274-010-0558-5
- Gobinath, D., Madhu, A.N., Prashant, G., Srinivasan, K., Prapulla, S.G., Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. Br. J. Nutr., 104(1), 40-47 (2010). https://doi.org/10.1017/S0007114510000243
- Ilyas, R., Wallis, R., Soilleux, E.J., Townsend, P., Zehnder, D., Tan, B.K., Sim, R.B., Lehnert, H., Randeva, H.S., Mitchell, D.A., High glucose disrupts oligo-saccharide recognition function via competitive inhibition: a potential mechanism for immune dysregulation in Diabetes mellitus. Immunobiology, 216(1-2), 126-131 (2011). https://doi.org/10.1016/j.imbio.2010.06.002
- Zhang, J., Yu, Y., Zhang, Z., Ding, Y., Dai, X., Li, Y., Effect of polysaccharide from cultured Cordyceps sinensis on immune function and anti-oxidation activity of mice exposed to 60Co. Int. Immunopharmacol., 11(12), 2251-2257 (2011). https://doi.org/10.1016/j.intimp.2011.09.019
- Wang, N., Yang, J., Lu, J., Qiao, Q., Wu, T., Du, X., Bao, G., He, X., A polysaccharide from Salvia miltiorrhiza Bunge improves immune function in gastric cancer rats. Carbohydr. Polym., 111, 47-55 (2014). https://doi.org/10.1016/j.carbpol.2014.04.061
- Lemieszek, M., Rzeski, W., Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp. Oncol., 16(4), 285 (2012).
- Fedorov, S.N., Ermakova, S.P., Zvyagintseva, T.N., Stonik, V.A., Anticancer and cancer preventive properties of marine polysaccharides: Some results and prospects. Mar. Drugs, 11(12), 4876-4901 (2013). https://doi.org/10.3390/md11124876
- Sanjeewa, K.A., Lee, J.S., Kim, W.S., Jeon, Y.J., The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran. Carbohydr. Polym., 177, 451-459 (2017). https://doi.org/10.1016/j.carbpol.2017.09.005
- Borai, I.H., Ezz, M.K., Rizk, M.Z., Matloub, A.A., Aly, H.F., El, A., Farrag, R., Fouad, G.I., Hypolipidemic and anti-atherogenic effect of sulphated polysaccharides from the green alga Ulva fasciata. Int. J. Pharm. Sci. Rev. Res, 31(1), 1-12 (2015).
- Ren, S., Newby, D., Li, S.C., Walkom, E., Miller, P., Hure, A., Attia, J., Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart, 2(1), e000247 (2015). https://doi.org/10.1136/openhrt-2015-000247
- Li, H., Zhang, M., Ma, G., Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition, 26(5), 556-562 (2010). https://doi.org/10.1016/j.nut.2009.06.009
- Zhang, S., Zhang, Q., Zhang, D., Wang, C., Yan, C., Antiosteoporosis activity of a novel Achyranthes bidentata polysaccharide via stimulating bone formation. Carbohydr. Polym., 184, 288-298 (2018). https://doi.org/10.1016/j.carbpol.2017.12.070
- Mussatto, S.I., Mancilha, I.M., Non-digestible oligosaccharides: a review. Carbohydr. Polym., 68(3), 587-597 (2007). https://doi.org/10.1016/j.carbpol.2006.12.011
- Asraf, S.S., Gunasekaran, P., 2010. Current trends of sgalactosidase research and application. Current Research, Technology and Education Topics In Applied Microbiology And Microbial Biotechnology. Microbiology Book Series Formatex Research Center, Badajoz, Spain, pp. 880-890.
- El-Sayed, M.M., Chase, H.A., Trends in whey protein fractionation. Biotechnol. Lett., 33(8), 1501-1511 (2011). https://doi.org/10.1007/s10529-011-0594-8
- Yang, S., Hai, F.I., Nghiem, L.D., Price, W.E., Roddick, F., Moreira, M.T., Magram, S.F., Understanding the factors controlling the removal of trace organic contaminants by whiterot fungi and their lignin modifying enzymes: a critical review. Bioresour. Technol., 141, 97-108 (2013). https://doi.org/10.1016/j.biortech.2013.01.173
-
Serebriiskii, I.G., Golemis, E.A., Uses of lacZ to study gene function: evaluation of
${\beta}$ -galactosidase assays employed in the yeast two-hybrid system. Anal. Biochem., 285(1), 1-15 (2000). https://doi.org/10.1006/abio.2000.4672 - Torres, D.P., Gonçalves, M.D.P.F., Teixeira, J.A., Rodrigues, L.R., Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf., 9(5), 438-454 (2010). https://doi.org/10.1111/j.1541-4337.2010.00119.x
-
Lu, L.L., Xiao, M., Li, Z.Y., Li, Y.M., Wang, F.S., A novel transglycosylating
${\beta}$ -galactosidase from Enterobacter cloacae B5. Process Biochem., 44(2), 232-236 (2009). https://doi.org/10.1016/j.procbio.2008.10.010 - Ito, M., Deguchi, Y., Miyamori, A., Matsumoto, K., Kikuchi, H., Matsumoto, K., Kobayashi, Y., Yajima, T., Kan, T., Effects of administration of galacto-oligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microb. Ecol. Health Dis., 3(6), 285-292 (1990). https://doi.org/10.3109/08910609009140251
- Coughlan, L.M., Cotter, P.D., Hill, C., Alvarez-Ordonez, A., Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front. Microbiol., 6, 672 (2015).
- Fanaro, S., Boehm, G., Garssen, J., Knol, J., Mosca, F., Stahl, B., & Vigi, V. Galacto-oligosaccharides and long-chain fructo?oligosaccharides as prebiotics in infant formulas: A review. Acta paediatr., 94, 22-26 (2005). https://doi.org/10.1111/j.1651-2227.2005.tb02150.x
- Wang, J., Wang, X., Shi, L., Qi, F., Zhang, P., Zhang, Y., Zhou, X., Song, Z., Cai, M., Methanol-independent protein expression by AOX1 promoter with trans-acting elements engineering and glucose-glycerol-shift induction in Pichia pastoris. Sci. Rep., 7, 41850 (2017). https://doi.org/10.1038/srep41850
- Calik, P., Ata, O., Gunes, H., Massahi, A., Boy, E., Keskin, A., Ozturk, S., Zerze, G.H. Ozdamar, T.H., Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters. Biochem. Eng. J., 95, 20-36 (2015). https://doi.org/10.1016/j.bej.2014.12.003
- Zhang, A.L., Luo, J.X., Zhang, T.Y., Pan, Y.W., Tan, Y.H., Fu, C.Y., Tu, F.Z., Recent advances on the GAP promoter derived expression system of Pichia pastoris. Mol. Biol. Rep., 36(6), 1611-1619 (2009). https://doi.org/10.1007/s11033-008-9359-4
- Bollok, M., Resina, D., Valero, F., Ferrer, P., Recent patents on the Pichia pastoris expression system: expanding the toolbox for recombinant protein production. Recent Pat. Biotechnol., 3(3), 192-201 (2009). https://doi.org/10.2174/187220809789389126
- Waterham, H.R., Digan, M.E., Koutz, P.J., Lair, S.V., Cregg, J.M., Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene, 186(1), 37-44 (1997). https://doi.org/10.1016/S0378-1119(96)00675-0
- Roach, P., Parker, T., Gadegaard, N., Alexander, M.R., Surface strategies for control of neuronal cell adhesion: a review. Surf. Sci. Rep., 65(6), 145-173 (2010). https://doi.org/10.1016/j.surfrep.2010.07.001
- Di Gianvito, P., Tesniere, C., Suzzi, G., Blondin, B., Tofalo, R., FLO 5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci. Rep., 7(1), 1-12 (2017). https://doi.org/10.1038/s41598-016-0028-x
- Goossens, K., Willaert, R., Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol. Lett., 32(11), 1571-1585 (2010). https://doi.org/10.1007/s10529-010-0352-3
- Domingo, J.L., Stationary phase-specific expression of dominant flocculation genes for controlled flocculation of yeast. PhD thesis: Stellenbosch University, Stellenbosch, Republic of South Africa (2003).