DOI QR코드

DOI QR Code

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials

콘크리트 내부결함 탐지를 위한 초음파 전파 해석

  • Jung, Hwee Kwon (Department of Civil Engineering, Chonnam National Univ.) ;
  • Rhee, Inkyu (Department of Civil Engineering, Chonnam National Univ.) ;
  • Kim, Jae-Min (Department of Civil Engineering, Chonnam National Univ.)
  • Received : 2020.02.12
  • Accepted : 2020.06.16
  • Published : 2020.08.31

Abstract

Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

초음파 탐상은 다양한 콘크리트 구조물의 비파괴검사에서 활용된다. 본 연구에서는 골재형상을 고려한 골재-모르타르 모델 생성과 초음파 전파 해석을 수행하였다. 실제 골재형상을 반영하기 위해 이미지처리를 통한 골재-모르타르 단면으로부터 모르타르와 골재 영역을 파악하고, 영역 경계형상을 보존하면서 격자를 생성하는 기법을 개발하였다. 개발된 기법에서는 모든 격자가 4각형으로 생성된다. 골재-모르타르 모델을 통해 초음파 전파 해석을 수행하였고 모델을 반무한체로 간주하기 위해 CALM 기반 경계흡수 조건을 적용하였다. 골재 및 결함을 포함한 이미지로부터 격자를 생성한 뒤, 결함 영역에 포함된 격자를 제거하여 공극결함을 모사하였다. 본격적인 결함탐지 전 선행 해석을 통해 모델 동특성을 고려한 적절한 가진 주파수를 결정 및 가진 신호형상을 설계하였다. 이후 case 별초음파 전파 해석을 통해 신호를 획득하고 신호 에너지 맵핑 작업을 통해 내부 결함을 가시화 하였다. 가시화 결과, 골재에 의한 다수반사 및 산란현상이 관찰되지만 결함부에서 신호 에너지는 가장 높게 나타났으며 모든 해석 case에서 결함위치 추정이 가능하였다. 또한 균열의 경우 형상파악도 가능하였다.

Keywords

References

  1. Ariannejad, H. (2019) Numerical Simulation of Diffuse Ultrasonic Waves in Concrete, Master's thesis, University of Nebraska.
  2. Chen, H., Xu, B., Mo, Y., Zhou, T. (2018) Multi-Scale Stress Wave Simulation for Aggregates Segregation Detection of Concrete Core in Circular CFST Coupled with PZT Patches, Mater., 11(7), p.1223. https://doi.org/10.3390/ma11071223
  3. Chen, H., Xu, B., Zhou, T., Mo, Y.L. (2019) Debonding Detection for Rectangular CFST using Surface Wave Measurement, Mech. Syst. & Signal Process., 117, pp.238-254. https://doi.org/10.1016/j.ymssp.2018.07.047
  4. Cho, Y.J., Rhim, H.C., Kim, D.Y. (2016) Ultrasonic Testing of Voids Inside Mortar for Structural Integrity Evaluation, Korea Inst. Build. Constr., 16(1), pp.90-91.
  5. Giurgiutiu, V. (2014) Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed.; Academic Press: Cambridge, MA, USA.
  6. Hoegh, K., Khazanovich, Lev., Yu, H.T. (2011) Ultrasonic Tomography Technique for Evaluation Concrete Pavements, J. Transp. Res. Board, 2233, pp.85-94.
  7. Jung, H.K., Park, G. (2019) Rapid and Non-Invasive Surface Crack Detection for Pressed-Panel Products based on Online Image Processing, Struct. Health Monit., 18(2019), pp.1928-1942. https://doi.org/10.1177/1475921718811157
  8. Khazanovich, L., Freeseman, K., Salles, L., Asadollahi, A. (2016) Damage detection techniques for concrete applications, University Transportation Center for Highway Pavement Presentation.
  9. Lesnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J. (2011) Characterization of ASR Damage in Concrete using Non-Linear Impact Resonance Acoustic Spectroscopy Technique, NDT&E Int., 44(8), pp.721-727. https://doi.org/10.1016/j.ndteint.2011.07.010
  10. Li, J., Lu, Y., Guan, R., Qu, W. (2017) Guided Waves for Debonding Identification on CFRP-Reinforced Concrete Beams, Constr. & Build. Mater., 131, pp.388-399. https://doi.org/10.1016/j.conbuildmat.2016.11.058
  11. Lorenzi, A., Tisbierek, F.T., Silva, L.C.P.F. (2007) Ultrasonic Pulse Velocity Analysis in Concrete Specimens, Conf. IV Conferencia Panamericana de Ensayos No Destructivos, Buenos Aires, ARG, pp.1-13.
  12. Mohamed, A.R., Hansen, W. (1999) Micromechanical Modeling of Crack-Aggregate Interaction in Concrete Materials, Cem. Concr. Compos., 21, pp.349-359. https://doi.org/10.1016/S0958-9465(99)00016-5
  13. Ng, C.T., Mohsensi, H., Lam, H.F. (2019) Debonding Detection in CFRP-Retrofitted Reinforced Concrete Structures using Nonlinear Rayleigh Wave, Mech. Syst. & Signal Proc., 125, pp.245-256. https://doi.org/10.1016/j.ymssp.2018.08.027
  14. Park, S.J., Yim, H.J., Kwak, H.G. (2012) Evaluation of Microcracks in Thermal Damaged Concrete using Nonlinear Ultrasonic Modulation Technique, J. Korea Concr. Inst., 24(6), pp.651-658. https://doi.org/10.4334/JKCI.2012.24.6.651
  15. Park, S.K., Baek, U.C., Lee, H.B., Kim, M.M. (2000) Non-Destructive Inspection of Top-Down Construction Joints of Column in SRC Structure using Ultrasonic Method, J. Korean Soc. Nondestruct. Test., 20(4), pp.290-295.
  16. Rodrigues, A., Dimitrovova, Z. (2015) The Caughey Absorbing Layer Method-Implementation and Validation in Ansys Software, Lat. Am. J. Solids & Struct., 12(8).
  17. Sa, M.H., Yoon, Y.G., Lee, I.B., Woo, I.S., Oh, T.K. (2017) A Study on the Statistical Distribution of Rebound Number and Ultrasonic Pulse Velocity in RC and PSC Concrete Structure, J. Korean Soc. Saf., 32(4), pp.53-58. https://doi.org/10.14346/JKOSOS.2017.32.4.53
  18. Schlangen, E., Garboczi, E. (1996) New Method for Simulating Fracture using an Elastically Uniform Random Geometry Lattce, Int. J. Eng. Sci., 34, pp.1131-1144. https://doi.org/10.1016/0020-7225(96)00019-5
  19. Shah, J.K., Majhi, S., Mukherjee, A. (2018) Ultrasonic based Crack Imaging in Concrete, The 11th International Conference on Structural Integrity and Failure 2018, University of Western Australia, Australia.
  20. Shen, W., Dongsheng, L., Jinping, O. (2018) Numerical simulation of guided wave propagation in reinforced concrete structures with debond damage, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, Denver, Colorado, USA.
  21. Smolarkiewicz, P.P., Nogueira, C.L., Willam, K.J. (2000) Ultrasonic Evaluation of Damage in Heterogeneous Concrete Materials, European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, Spain, pp.1-13.
  22. Vuong, L.T., LE, C., Nguyen, D.S. (2019) A Two-Dimensional Simulation of Ultrasonic Wave Propagation in Concrete using Finite Element Method, Int. J. Civil Eng. & Technol., 10(3), pp.566-580.
  23. Wang, Z., Kwan, A., Chan, H. (1999) Mesoscopic Study of Concrete I: Generation of Random Aggregate Structure and Finite Element Mesh, Comput. & Struct., 70, pp.533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  24. Wriggers, P., Moftah, S. (2006) Homogenisation and Damage Behaviour, Finite Elements in Anal. & Des., 42, pp.623-636. https://doi.org/10.1016/j.finel.2005.11.008
  25. Xu, B., Zhang, T., Song, G., Gu, H.C. (2012) Active Interface Debonding Detection of a Concrete-Filled Steel Tube with Piezoelectric Technologies using Wavelet Packet Analysis, Mech. Syst. & Signal Process., 36, pp.7-17. https://doi.org/10.1016/j.ymssp.2011.07.029
  26. Yu, T., Chaix, J.F., Audibert, L., Komatitsch, D., Garnier, V., Henault, J.M. (2019) Simulation of Ultrasonic Wave Propagation in Concrete based on a Two-Dimensional Numerical Model Validated Analytically and Experimentally, Ultrasonics, 92, pp.21-34. https://doi.org/10.1016/j.ultras.2018.07.018
  27. Yu, T., Chaix, J.F., Komatitsch, D., Garnier, V., Audibert , L., Henault, J.M. (2017) 2D Numerical Modeling of Ultrasonic Wave Propagation in Concrete: A Parameterization Study in a Multiple-Scattering Medium, 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Atlanta, Georgia, USA.
  28. Zheng, Z., Lei, Y., Xin, X. (2014) Numerical Simulation of Monitoring Corrosion in Reinforced Concrete based on Ultrasonic Guided Waves, The Sci. World J.
  29. Zhu, W., Tang, C., Wang, S. (2005) Numerical Study on the Influence of Mesomechanical Properties on Macroscopic Fracture of Concrete, Struct. Eng. & Mech., 19, pp.519-533. https://doi.org/10.12989/sem.2005.19.5.519
  30. Zima, B. (2019) Guided Wave Propagation in Detection of Partial Circumferential Debonding in Concrete Structures, Sensors, 19(9), pp.1-21. https://doi.org/10.1109/JSEN.2019.2925985