DOI QR코드

DOI QR Code

Effects of Typhoon and Mesoscale Eddy on Generation and Distribution of Near-Inertial Wave Energy in the East Sea

동해에서 태풍과 중규모 소용돌이가 준관성주기파 에너지 생성과 분포에 미치는 영향

  • SONG, HAJIN (Department of Marine Science and Biological Engineering, Inha University) ;
  • JEON, CHANHYUNG (Department of Mechanical Engineering, Massachusetts Institute of Technology) ;
  • CHAE, JEONG-YEOB (Department of Marine Science and Biological Engineering, Inha University) ;
  • LEE, EUN-JOO (Department of Marine Science and Biological Engineering, Inha University) ;
  • LEE, KANG-NYEONG (Department of Marine Science and Biological Engineering, Inha University) ;
  • TAKAYAMA, KATSUMI (Research Institute for Applied Mechanics, Kyushu University) ;
  • CHOI, YOUNGSEOK (Department of Marine Science and Biological Engineering, Inha University) ;
  • PARK, JAE-HUN (Department of Ocean Sciences, Inha University)
  • 송하진 (인하대학교 해양과학.생물공학과 대학원) ;
  • 전찬형 (매사추세츠 공과대학 기계공학과) ;
  • 채정엽 (인하대학교 해양과학.생물공학과 대학원) ;
  • 이은주 (인하대학교 해양과학.생물공학과 대학원) ;
  • 이강녕 (인하대학교 해양과학.생물공학과 대학원) ;
  • ;
  • 최영석 (인하대학교 해양과학.생물공학과 대학원) ;
  • 박재훈 (인하대학교 해양과학과)
  • Received : 2020.05.19
  • Accepted : 2020.07.24
  • Published : 2020.08.31

Abstract

Near-inertial waves (NIW) which are primarily generated by wind can contribute to vertical mixing in the ocean. The energetic NIW can be generated by typhoon due to its strong wind and preferable wind direction changes especially on the right-hand side of the typhoon. Here we investigate the generation and distribution of NIW using the output of a real-time ocean forecasting system. Five-year model outputs during 2013-2017 are analyzed with a focus on cases of energetic NIW generation by the passage of three typhoons (Halong, Goni, and Chaba) over the East Sea. Calculations of wind energy input (${\bar{W}}_I$), and horizontal kinetic energy in the mixed layer (${\bar{HKE}}_{MLD}$) reveal that the spatial distribution of ${\bar{HKE}}_{MLD}$, which is strengthened at the right-hand side of typhoon tracks, is closely related with ${\bar{W}}_I$. Horizontal kinetic energy in the deep layer (${\bar{HKE}}_{DEEP}$) shows patch-shaped distribution mainly located at the southern side of the East Sea. Spatial distribution of ${\bar{HKE}}_{DEEP}$ shows a close relationship with negative relative vorticity regions caused by warm eddies in the upper layer. Monthly-mean ${\bar{HKE}}_{MLD}$ and ${\bar{HKE}}_{DEEP}$ during a typhoon passing over the East Sea shows about 2.5-5.7 times and 1.2-1.6 times larger values than those during summer with no typhoons, respectively. In addition, their magnitudes are respectively about 0.4-1.0 and 0.8-1.0 times from those during winter, suggesting that the typhoon-induced NIW can provide a significant energy to enhance vertical mixing at both the mixed and deep layers during summer.

준관성주기파(NIW)는 주로 바람에 의해 생성되며, 해양 연직혼합에 중요한 요소이다. 태풍의 빠른 풍속과 이동경로에 따른 풍향변화는 NIW 생성에 충분한 조건을 제공한다. 본 연구에서는 동해 실시간 해황예보모형 출력자료를 이용하여 태풍의 영향으로 인한 NIW의 생성과 분포 그리고 동해 중규모 소용돌이가 NIW의 심층 전파에 주는 영향에 대해 검토하였다. 이용한 출력자료 기간은 2013년부터 2017년까지 총 5개년이며, 이 기간 중 동해에 강한 NIW에너지를 만든 3개 태풍(할롱, 고니, 차바)에 초점을 맞추었다. 태풍에 의한 NIW 변동을 검토하기 위하여 강제력으로 작용하는 태풍의 바람에너지유입(${\bar{W}}_I$)과 함께 NIW 에너지의 지표인 혼합층 및 심층 수평운동에너지(${\bar{HKE}}_{MLD}$, ${\bar{HKE}}_{DEEP}$)를 계산하였다. ${\bar{HKE}}_{MLD}$${\bar{W}}_I$와 밀접한 관련을 보였으며 태풍 경로의 오른편에서 강하게 나타났다. ${\bar{HKE}}_{DEEP}$는 주로 동해 남부에서 패치형태로 강하게 나타났으며, 음의 상대 소용돌이도를 가지는 난수성 소용돌이와의 상관성이 확인되었다. NIW에너지에 태풍이 주는 영향을 확인하기 위해, 태풍이 없는 여름철과 12월의 에너지와 상호 비교하였다. 그 결과, 태풍에 의한 ${\bar{HKE}}_{MLD}$는 태풍이 없는 여름에 비해 2.5~5.7배, NIW가 가장 큰 12월 평균대비 0.4~1.0배였고, 태풍에 의한 ${\bar{HKE}}_{DEEP}$는 태풍이 없는 여름대비 1.2~1.6배, 12월 평균대비 0.8~1.0배로 태풍에 의한 NIW가 혼합층과 심층의 해양 연직혼합 모두에 상당한 영향을 줄 수 있음을 확인하였다.

Keywords

References

  1. Alford, M.H., 2001. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near‐inertial motions. J. Phys. Oceanogr., 31(8): 2359-2368. https://doi.org/10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2
  2. Alford, M.H., 2003. Redistribution of energy available for ocean mixing by long‐range propagation of internal waves. Nature, 423: 159-162. https://doi.org/10.1038/nature01628
  3. Byun, S.-S., J.J. Park, K.-I. Chang and R.W. Schmitt, 2010. Observation of near‐inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett., 37: L01606. https://doi.org/10.1029/2009GL041601
  4. Chang, K.-I., C.I. Zhang, C. Park, D.J. Kang, S.J. Ju, S.H. Lee and M. Wimbush, 2016. Oceanography of the East Sea (Japan Sea). Springer, 460 pp.
  5. Chang, K.-I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.-K. Lee, D.R. Watts, Y.-B. Kim, D.A. Mitchell, C.M. Lee and K. Kim, 2004. Circulation and currents in the southwestern East/Japan Sea: Overview and review. Prog. Oceanogr., 61(2-4): 105-156. https://doi.org/10.1016/j.pocean.2004.06.005
  6. Crawford, G.B. and W.G. Large, 1996. A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26(6): 873-891. https://doi.org/10.1175/1520-0485(1996)026<0873:ANIORI>2.0.CO;2
  7. D'Asaro, E.A., 1985. The energy flux from the wind to near‐inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15(8): 1043-1059. https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2
  8. Furuichi, N., T. Hibiya and Y. Niwa, 2008. Model-predicted distribution of wind-induced internal wave energy in the world's oceans. J. Geophys. Res. Oceans., 113: C09034.
  9. Gent, P.R. and J.C. Mcwilliams, 1990. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20(1): 150-155. https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  10. Hirose, N., 2011. Inverse estimation of empirical parameters used in a regional ocean circulation model. J. Oceanogr., 67: 323-336. https://doi.org/10.1007/s10872-011-0041-4
  11. Hirose, N., C.H. Kim and J.H. Yoon, 1996. Heat budget in the Japan sea. J. Oceanogr., 52: 553-574. https://doi.org/10.1007/BF02238321
  12. Hirose, N., K. Takayama, J.-H. Moon, T. Watanabe and Y. Nishida, 2013. Regional data assimilation system extended to the East Asian marginal seas. Umi to Sora (Sea and Sky), 89(2): 1-9.
  13. Isoda, Y., 1994. Warm eddy movements in the eastern Japan Sea. J. Oceanogr., 50(1): 1-15. https://doi.org/10.1007/BF02233852
  14. Jeon, C., J.-H. Park, H. Nakamura, A. Nishina, X.H. Zhu and D.G. Kim, 2019a. Poleward-propagating near-inertial waves enabled by the western boundary current. Sci. Rep., 9(1): 9955.
  15. Jeon, C., J.-H. Park and Y.-G. Park, 2019b. Temporal and spatial variability of near-inertial waves in the East/Japan Sea from a high-resolution wind-forced ocean model. J. Geophys. Res. Oceans., 124: 6015-6029. https://doi.org/10.1029/2018JC014802
  16. Jeon, C., J.-H. Park, S.M. Varlamov, J.-H. Yoon, Y.H. Kim, S. Seo, Y.-G. Park, H.S. Min, J.H. Lee and C.-H. Kim, 2014. Seasonal variation of semidiurnal internal tides in the East/Japan Sea. J. Geophys. Res. Ocean., 119, 2843-2859. https://doi.org/10.1002/2014JC009864
  17. Kawaguchi, Y., T. Wagawa and Y. Igeta, 2020. Near-inertial internal waves and multiple-inertial oscillations trapped by negative vorticity anomaly in the central Sea of Japan. Prog. Oceanogr., 181: 102240. https://doi.org/10.1016/j.pocean.2019.102240
  18. Kim, E., D. Jeon, C.J. Jang and J.-H. Park, 2013. Typhoon Rammasun-induced near-inertial oscillations observed in the tropical Northwestern Pacific Ocean. Terr. Atmos. Ocean. Sci., 24(4): 761-772. https://doi.org/10.3319/TAO.2013.03.28.01(Oc)
  19. Kondo, J., 1975. Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteorol., 9: 91-112. https://doi.org/10.1007/BF00232256
  20. Kunze, E., 1985. Near‐inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15: 544-565. https://doi.org/10.1175/1520-0485(1985)015<0544:NIWPIG>2.0.CO;2
  21. Large, W.G. and G.B. Crawford, 1995. Observations and simuluations of upper-ocean response to wind events during the ocean storms experiment. J. Phys. Oceanogr., 25: 2831-2852. https://doi.org/10.1175/1520-0485(1995)025<2831:OASOUO>2.0.CO;2
  22. Lee, D.-K. and P.P. Niiler, 1998. The inertial chimney: The near‐inertial energy drainage from the ocean surface to the deep layer. J. Geophys. Res., 103(C4), 7579-7591.
  23. Lee, H.J., J.-H. Yoon, H. Kawamura and H.-W. Kang, 2003. Comparison of RIAMOM and MOM in modeling the East Sea/Japan Sea circulation. Ocean Polar Res., 25(3):287-302. https://doi.org/10.4217/OPR.2003.25.3.287
  24. MacKinnon, J.A., Z. Zhao, C.B. Whalen, A.F. Waterhouse, D.S. Trossman, O.M. Sun, L.C. St Laurent, H.L. Simmons, K. Polzin, R. Pinkel, A. Pickering, N.J. Norton, J.D. Nash, R. Musgrave, L.M. Merchant, A.V. Melet, B. Mater, S. Legg, W.G. Large, E. Kunze, J.M. Klymak, M. Jochum, S.R. Jayne, R.W. Hallberg, S.M. Griffies, S. Diggs, G. Danabasoglu, E.P. Chassignet, M.C. Buijsman, F.O. Bryan, B.P. Briegleb, A. Barna, B.K. Arbic, J.K. Ansong and M.H. Alford, 2017. Climate process team on internal wave driven ocean mixing. Bull. Amer. Meteor. Soc., 98(11): 2429-2454. https://doi.org/10.1175/BAMS-D-16-0030.1
  25. Moon, J.-H., N. Hirose and A. Morimoto, 2012. Green's function approach for calibrating tides in a circulation model for the East Asian marginal seas. J. Oceanogr., 68: 345-354. https://doi.org/10.1007/s10872-011-0097-1
  26. Morimoto, A., T. Yanagi and A. Kaneko, 2000. Eddy field in the Japan Sea derived from satellite altimetric data. J. Oceanogr., 56(4): 449-462. https://doi.org/10.1023/A:1011184523983
  27. Munk, W. and C. Wunsch, 1998. Abyssal recipes II: Energetics of tidal and wind mixing. Deep. Res. Part I Oceanogr. Res. Pap., 45(12): 1977-2010. https://doi.org/10.1016/S0967-0637(98)00070-3
  28. Nam, S. and Y.-G. Park, 2013. Simulation of wind-induced near-inertial oscillations in a mixed layer near the east coast of Korea in the East/Japan Sea. Acta. Oceanol. Sin., 32: 11-20.
  29. Niwa, Y. and T. Hibiya, 1999. Response of the deep ocean internal wave field to traveling midlatitude storms as observed in long‐term current measurements. J. Geophys. Res., 104(C9): 20857. https://doi.org/10.1029/1999JC900211
  30. Noh, Y. and H.J. Kim, 1999. Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near‐surface process. J. Geophys. Res., 104(C7): 15,621-15,634. https://doi.org/10.1029/1999JC900068
  31. Park, J.-H., M. Andres, P.J. Martin, M. Wimbush and D.R. Watts, 2006. Second-mode internal tides in the East China Sea deduced from historical hydrocasts and a model. Geophys. Res. Lett., 33: L05602. https://doi.org/10.1029/2005GL024732
  32. Park, J.-H. and D.R. Watts, 2005. Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett., 32: L10611. https://doi.org/10.1029/2005GL022936
  33. Park, J.J. and K. Kim, 2013. Deep currents obtained from Argo float trajectories in the Japan/East Sea. Deep-Res. II, 85: 169-181. https://doi.org/10.1016/j.dsr2.2012.07.032
  34. Park, Y.-G., J.-H. Park, H.J. Lee, H.S. Min and S.-D. Kim, 2013. The effects of geothermal heating on the East/Japan Sea circulation. J. Geophys. Res. Ocean., 118: 1893-1905. https://doi.org/10.1002/jgrc.20161
  35. Talley, L.D., P. Tishchenko, V. Luchin, A. Nedashkovskiy, S. Sagalaev, D.-J. Kang, M. Warner and D.-H. Min, 2004. Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Prog. Oceanogr., 61(2-4): 277-348. https://doi.org/10.1016/j.pocean.2004.06.011
  36. Thomson, R.E. and I.V. Fine, 2003. Estimating mixed layer depth from oceanic profile data. J. Atmos. Oceani. Technol., 20(2): 319-329. https://doi.org/10.1175/1520-0426(2003)020<0319:EMLDFO>2.0.CO;2
  37. Trusenkova, O.O., S.V. Stanichnyi and Y.B. Ratner, 2007. Major variability modes and wind patterns over the Sea of Japan and adjacent areas. Izv. Atmos. Ocean. Phys., 43(5): 634-648. https://doi.org/10.1134/S0001433807050118
  38. Varlamov, S.M., X. Guo, T. Miyama, K. Ichikawa, T. Waseda and Y. Miyazawa, 2015. M2 baroclinic tide variability modulated by the ocean circulation south of Japan. J. of Geophys. Res. Ocean., 120, 3681-3710. https://doi.org/10.1002/2015JC010739
  39. Whalen, C.B., J.A. MacKinnon and L.D. Talley, 2018. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 11: 842-847. https://doi.org/10.1038/s41561-018-0213-6

Cited by

  1. Nonseasonal Variations in Near-Inertial Kinetic Energy Observed Far below the Surface Mixed Layer in the Southwestern East Sea (Japan Sea) vol.10, pp.1, 2022, https://doi.org/10.3390/jmse10010009