DOI QR코드

DOI QR Code

Experimental Assessment of Manufacturing System Efficiency and Hydrogen Reduction Reaction for Fe(0) Simulation for KLS-1

한국형 인공월면토 생산 시스템 효율성 및 Fe(0) 모사를 위한 수소 환원반응에 관한 실험적 평가

  • Jin, Hyunwoo (Korea Institute of Civil Engrg. and Building Technology) ;
  • Kim, Young-Jae (Korea Institute of Civil Engrg. and Building Technology) ;
  • Ryu, Byung Hyun (Korea Institute of Civil Engrg. and Building Technology) ;
  • Lee, Jangguen (Korea Institute of Civil Engrg. and Building Technology)
  • Received : 2020.05.07
  • Accepted : 2020.06.22
  • Published : 2020.08.31

Abstract

Korea Institute of Civil Engineering and Building Technology has constructed a large scale Dust Thermal Vacuum Chamber to simulate extreme lunar terrestrial environments and to study the Moon as an outposts for space development and exploration. Although a large amount of KLS-1 (Korean Lunar Simulant-1) is required for research, its massive production is practically difficult. This paper describes semi-automatic manufacturing system for massive production of KLS-1 in detail, which is seven times more efficient than manual production. In addition, to increase the similarity with lunar regolith, hydrogen reduction reaction using ilmenite which is one of the minerals was also conducted to simulate nanophase Fe(0) which is the unique property of lunar regolith. As a result, it was found that np-Fe(0) was formed at a temperature of 700℃ or higher, and increased in proportion to the temperature until 900℃.

최근 한국건설기술연구원은 우주개발 및 심우주 탐사를 위한 전진기지로서 활용도가 높은 달에 관한 연구수행을 목적으로 달 행성 지상 환경 모사를 위한 대규모 지반 열 진공 챔버(DTVC)를 건설하였다. 유관연구 수행을 위해 대량의 한국형 인공월면토(KLS-1)가 요구되고 있음에도 불구하고 현실적으로 대량생산은 어려운 실정이다. 본 논문에서는 KLS-1의 대량 생산이 가능한 반자동화 시스템에 관해 상세하게 설명하고 있으며, 이것이 기존 생산 시스템보다 7배 이상 효율적임을 밝혀냈다. 뿐만 아니라, 월면토와의 유사성 증대를 위해 월면토 고유 특성인 nanophase Fe(0) (이하 np-Fe(0))을 모사하기 위한 실험적 연구를 진행하였다. 월면토를 이루는 광물 중 하나인 티탄철석(ilmenite)을 활용해 수소기체 환원반응을 진행한 결과, 700℃ 이상의 온도에서는 np-Fe(0)이 형성됨을 밝혀냈으며 900℃까지는 온도와 비례하여 np-Fe(0)이 증가함을 밝혀냈다.

Keywords

References

  1. Anand, M., Crawford, I.A., M. Balat-Pichelin, S. Abanades, W. van Westrenen, G. Peraudeau, R. Jaumann, and W. Seboldt (2012), "A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely in Situ Resource Utilization (ISRU) applications", Planet. Space Sci., Vol. 74(1), pp. 42-48. https://doi.org/10.1016/j.pss.2012.08.012
  2. Burgess, K.D. and Stroud, D. (2017), "Spectroscopic identification of implanted solar wind Helium in vesicles in Lunar ilmenite", Proceeding of 48th Lunar and Planetary Science Conference, Texas.
  3. Cannon, K. (2020) [viewed 6 May 2020], "Planet Simulant Database [online]", Florida, Available from: https://simulantdb.com/.
  4. Cesaretti, G., Dini, E., Kestelier, X.D., Colla, V., and Pambaguian, L. (2014), "Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology", Acta Astronautica, Vol. 93, pp. 430-450. https://doi.org/10.1016/j.actaastro.2013.07.034
  5. Christoffersen, R., Keller, L.P., and Mckay, D.S. (1996), "Microstructure, Chemistry, and Origin of Grain Rims on Ilmenite from the Lunar Soil Finest Fraction", Meteorit. Planet. Sci., Vol. 31, pp. 835-848. https://doi.org/10.1111/j.1945-5100.1996.tb02117.x
  6. Chung, T., Ahn, H., Yoo, Y., and Shin, H.S. (2019), "An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation", KSCE J. Civ. Eng., Vol. 39, No. 2, pp. 327-333.
  7. Garnock, B. and Bernold, L. (2012), "Experimental Study of Hollow-Core Beams Made with Waterless Concrete", Earth and Space 2012, American Society of Civil Engineers, pp. 119-127.
  8. Hung, C.C. and McNatt, J. (2012), Lunar dust simulant containing nanophase iron and method for making the same, United States Patent.
  9. ISO 10788 (2014), Space systems - Lunar simulants, ISO.
  10. Keller, L.P. and Mckay, D.S. (1993), "Discovery of Vapor Deposits in the Lunar Regolith", Science, Vol. 26(5126), pp. 1305-1307. https://doi.org/10.1126/science.261.5126.1305
  11. Keller, L.P. and Mckay, D.S. (1997), "The Nature and Oigin of Rims on Lunar Soil Grains", Geochim. Cosmochim. Ac., Vol. 26 (5126), pp. 1305-1307.
  12. Kim, Y.J. and Shin, H.S. (2019), "Fabrication and characterization of nanophase Fe(0) for microwave sintering of lunar regolith", KSCE 2019 Convention Conference & Civil Expo, Pyeongchang.
  13. Lim, S., Prabhu, V.L., Anand, M. and Taylor, L.A. (2017), "Extraterrestrial construction processes - Advancements, opportunities and challenges", Adv. Space Res., Vol. 60(7), pp. 1413-1429. https://doi.org/10.1016/j.asr.2017.06.038
  14. Liu, Y, Taylor, L.A., Hill, E., and Day, J.M.D. (2005), "Simulation of nanophase iron in lunar soil for use in ISRU studies", Proceeding of 68th Annual Meeting of the Meteoritical Society, Tennessee.
  15. Liu, Y., Taylor, L.A., Thompson, J.R., Schnare, D.W., and Park, J.S. (2007), "Unique Properties of Lunar Impact Glass: Nanophase Metallic Fe Synthesis", Am. Mineral., Vol. 92, pp. 1420-1427. https://doi.org/10.2138/am.2007.2333
  16. Mckay, D.S., Heiken, G.H., Taylor, R.M., Clanton, U.S., Morrison, D.A., and Ladle, G.H. (1972), "Apollo 14 soils: Size distribution and particle types", Proceeding of 3rd Lunar Science conference, Houston.
  17. Mckay, D.S., Carter, J.L., Boles, W.W., Allen, C.C., and Allton, J.H. (1994), "JSC-1: A New Lunar Soil Simulant", Engineering, Construction, and Operations in Space IV, Vol. 2, pp. 857-866.
  18. Pieters, C.M., Taylor, L.A., Noble, S.K., Keller, L.P., Hapke, B., Morris, R.V., Allen, C.C., McKAY, D.S., and Wentworth, S. (2000), "Space Weathering on Airless Bodies: Resolving a Mystery with Lunar Samples", Meteorit. Planet. Sci., Vol. 35(5), pp. 1101-1107. https://doi.org/10.1111/j.1945-5100.2000.tb01496.x
  19. Ryu, B.H., Beak, Y., Kim, Y.S., and Ilhan, C. (2015), Basic Study for a Korean Lunar Simulant (KLS-1) development, J. of the Korean Geotechnical Society, Vol. 31, No. 7, pp. 53-63. https://doi.org/10.7843/kgs.2015.31.7.53
  20. Ryu, B.H., Wang, C.C., and Ilhan, C. (2018), "Development and Geotechnical Engineering Properties of KLS-1 Lunar Simulant", J. Aerosp. Eng., Vol. 31(1), pp. 04017083-1-11. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000798
  21. Sibille, L., Carpenter, P., Schlagheck, R., and French, R.A. (2006), Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage, Marshall Space Flight Center.
  22. Steinberg, T.A., Newton, B.E., and Beeson, H.D. (2000), Flammability and sensitivity of materials in oxygen-enriched atmospheres: ninth volume. West Conshohocken, PA, USA, ASTM Stock Number: STP1395.
  23. Tang, H., Wang, S., and Li, X. (2012), "Simulation of Nanophase Iron Productino in Lunar Space Weathering", Planet. Space. Sci., Vol. 60(1), pp. 322-327. https://doi.org/10.1016/j.pss.2011.10.006
  24. Taylor, L.A. (1988), "Generation of native Fe in lunar soil", Proceeding of the Space '88 Conference, New York.
  25. Taylor, L.A. and Meek, T.T. (2005), "Microwave Sintering of Lunar Soil: Properties, Theory, and Practice", J. Aerosp. Eng., Vol. 18(3), pp. 188-196. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:3(188)
  26. Taylor, L.A., Pieters, C.M., and Britt, D. (2016), "Evaluations of Lunar Regolith Simulants", Planet. Space Sci., Vol. 126, pp. 1-7. https://doi.org/10.1016/j.pss.2016.04.005
  27. Weinstein, M. and Wilson, S.A. (2013), Apparatus and method for producing a lunar agglutinate simulant, United States Patent.
  28. Willman, B.M., Boles, W.W., Mckay, D.S., and Allen, C.C. (1995), "Properties of lunar soil simulant JSC-1", J. Aerosp. Eng., Vol. 8(2), pp. 77-87. https://doi.org/10.1061/(ASCE)0893-1321(1995)8:2(77)
  29. Zhang, S. and Keller, L. (2010), "A STEM-EELS Study of the Effect of Solar-wind Irradiation on the Ilmenite from Lunar Soil", Microsc. Microanal., Vol. 16(S2), pp. 1216-1217. https://doi.org/10.1017/S1431927610057053

Cited by

  1. 진공압에 따른 한국형 인공월면토(KLS-1)의 열전도도 평가 vol.37, pp.8, 2020, https://doi.org/10.7843/kgs.2021.37.8.51