References
- Subha, D.P.; Joseph, P.K.; Acharya, R.; Lim, C.M. "EEG signal analysis: A survey," J. Med. Syst., Vol. 34, pp. 195-212, April 2010. DOI: 10.1007/s10916-008-9231-z
- Korovesis, N.; Kandris, D.; Koulouras, G.; Alexandridis, A. "Robot Motion Control via an EEG-Based Brain-Computer Interface by Using Neural Networks and Alpha Brainwaves," Electronics, Vol.8(12), 1387, Nov. 2019. DOI: 10.3390/electronics8121387.
- U. Rajendra Acharya, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Hojjat Adeli, "Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals," Computers in Biology and Medicine, Vol. 100(1), pp. 270-278, Sep. 2018. DOI: 10.1016/j.compbiomed.2017.09.017
- Tabar YR and Halici U. "A novel deep learning approach for classification of EEG motor imagery signals," J Neural Eng. Vol. 14(1):016003, Nov. 2017. DOI: 10.1088/1741-2560/14/1/016003
- Kwak NS, Muller KR, Lee SW, "A convolutional neural network for steady state visual evoked potential classification under ambulatory environment," PLOS ONE, Vol. 12(2): e0172578, Feb. 2017. DOI: 10.1371/journal.pone.0172578
- H. Cecotti and A. Graser, "Convolutional Neural Networks for P300 Detection with Application to Brain-Computer Interfaces," in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 33, No. 3, pp. 433-445, March 2011. DOI:10.1109/TPAMI.2010.125.
- J. Katona and A. Kovari, "A Brain-Computer Interface Project Applied in Computer Engineering," in IEEE Transactions on Education, Vol. 59, No. 4, pp. 319-326, Nov. 2016. DOI:10.1109/TE.2016.2558163.
- Katona, Jozsef and Kovarii, Attila, "The evaluation of BCI and PEBL-based attention tests," Acta Polytechnica Hungarica, Vol.15, No. 1, June 2018. DOI: 10.12700/APH.15.3.2018.3.13.
- Katona, Jozsef and Kovarii, Attila, "Examining the learning efficiency by a brain-computer interface system," Acta Polytechnica Hungarica Vol. 15, No. 1, June 2018. DOI:10.12700/APH.15.3.2018.3.14.
- Sarah N. Abdulkader, Ayman Atia, Mostafa-Sami M. Mostafa, "Brain computer interfacing: Applications and challenges," Egyptian Informatics Journal, Vol. 16(2), pp. 213-230, July 2015. DOI: 10.1016/j.eij.2015.06.002.
- Nicolas-Alonso, Luis Fernando, and Jaime Gomez-Gil. "Brain computer interfaces, a review," Sensors, Vol. 12(2), pp. 1211-1279, Jan. 2012. DOI: 10.3390/s120201211.
- F. Amato, N. Mazzocca, F. Moscato and E. Vivenzio, "Multilayer Perceptron: An Intelligent Model for Classification and Intrusion Detection," 31st International Conference on Advanced Information Networking and Applications Workshops, pp. 686-691, May 2017. DOI: 10.1109/WAINA.2017.134.
- Jana, G.C.; Swetapadma, A.; Pattnaik, P.K. "Enhancing the performance of motor imagery classification to design a robust brain computer interface using feed forward back-propagation neural network," Ain Shams Eng. J. Vol. 9(4), pp. 2871-2878, Dec. 2018. DOI: 10.1016/j.asej.2017.12.003.
- De Boer, P., Kroese, D.P., Mannor, S. et al. "A Tutorial on the Cross-Entropy Method," Ann Oper Res, Vol. 134, pp. 19-67, Feb. 2005. DOI: 10.1007/s10479-005-5724-z.
- Virtanen, P., Gommers, R., Oliphant, T.E. et al. "SciPy 1.0: fundamental algorithms for scientific computing in Python," Nature Methods, Vol. 17, pp. 261-272, Feb. 2020. DOI:10.1038/s41592-019-0686-2
- Chollet, F. Keras: The python deep learning library. Astrophys. Source Code Libr. 2018. https://keras.io/k
- Abadi, M.; Barham, P.; Chen, J. et al. "TensorFlow: A system for large-scale machine learning," In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, pp.265-283, Nov. 2016.
- EEG Deep Learning Library, https://github.com/SuperBruceJia/EEG-DL