Abstract
Due to the important role played by emotion in human interaction, affective computing is dedicated in trying to understand and regulate emotion through human-aware artificial intelligence. By understanding, emotion mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction will be better managed as they are all associated with emotion. Various studies for emotion recognition have been conducted to solve these problems. In applying machine learning for the emotion recognition, the efforts to reduce the complexity of the algorithm and improve the accuracy are required. In this paper, we investigate emotion Electroencephalogram (EEG) feature reduction and classification using Stack AutoEncoder (SAE) and Long-Short-Term-Memory/Recurrent Neural Networks (LSTM/RNN) classification respectively. The proposed method reduced the complexity of the model and significantly enhance the performance of the classifiers.
감성 컴퓨팅은 인간의 상호 작용에서 중요한 역할을 하기 때문에 인간을 인식하는 인공 지능을 통해 감정을 이해하고 식별한다. 우울증, 자폐증, 주의력 결핍 과잉 행동 장애 및 게임 중독과 같은 정신 질환을 잘 이해함으로써 감정과 관련된 문제들을 잘 관리할 수 있을 것이다. 이러한 문제들을 해결하기 위해 감정 인식을 위한 다양한 연구가 수행되었는데 기계학습을 적용하는데 있어서는 알고리즘의 복잡성을 줄이고 정확도를 향상시키기 위한 노력이 필요하다. 본 논문에서는 이러한 노력중의 하나로 Stack AutoEncoder (SAE)를 이용하여 차원을 감소하는 방법과 Long-Short-Term-Memory/Recurrent Neural Networks (LSTM / RNN) 분류를 이용한 감성 분류에 대해 연구한 결과를 제시한다. 제안된 방법은 모델의 복잡성을 줄이고 분류기의 성능을 크게 향상시킨 결과를 가져왔다.