References
- P. Cordoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, 144(15), 274-286 (2015). https://doi.org/10.1016/j.fuel.2014.12.065
- J. Armor, Environmental catalysis, Appl. Catal. B: Environ., 1(4), 221-256 (1992). https://doi.org/10.1016/0926-3373(92)80051-Z
- N. Ohlms, DeSOxNOx process for flue gas cleaning, Catal. Today, 16(2), 247-261 (1993). https://doi.org/10.1016/0920-5861(93)85022-R
-
I. Giakoumelou, V. Parvulescu, and S. Boghosian, Oxidation of sulfur dioxide over supported solid
$V_2O_5$ /$SiO_2$ and supported molten salt$V_2O_5$ -$Cs_2SO_4$ /$SiO_2$ catalysts: Molecular structure and reactivity, J. Catal., 225, 337-349 (2004). https://doi.org/10.1016/j.jcat.2004.04.012 - G. K. Boreskov, Catalysis in Sulphuric Acid Production, 348, Goskhimizdat (in Russian), Moskow (1954).
- J. H. Frazer and W. J. Kirkpatrick, A new mechanism for the action of the vanadium pentoxide-silica-alkali pyrosulfate catalyst for the oxidation of sulfur dioxide, J. Am. Chem. Soc., 62(7), 1659-1660 (1940). https://doi.org/10.1021/ja01864a007
-
K. M. Eriksen, C. K. Jensen, S. B. Rasmussen, C. Oehlers, B. S. Bal'zhinimaev, and R. Fehrmann, EPR spectroscopic characterization of
$DeNO_x$ and$SO_2$ oxidation catalysts and model systems, Catal. Today, 54(4), 465-472 (1999). https://doi.org/10.1016/S0920-5861(99)00209-6 -
I. Giakoumelou, R. M. Caraba, V. I. Parvulescu, and S. Boghosian First in situ raman study of vanadium oxide based
$SO_2$ oxidation supported molten salt catalysts, Catal. Lett., 78(1-4), 209-214 (2002). https://doi.org/10.1023/A:1014957302360 -
A. Christodoulakis and S. Boghosian, Molecular structure of supported molten salt catalysts for
$SO_2$ oxidation, J. Catal., 215, 139-150 (2003). https://doi.org/10.1016/S0021-9517(02)00158-6 - S. Koutsopoulos, S. B. Rasmussen, K. M. Eriksen, and R. Fehrmann, The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts, Appl. Catal. A: Gen., 306(7), 142-148 (2006). https://doi.org/10.1016/j.apcata.2006.03.041
-
H. N. Sharma, Y. Sun, and E. A. Glascoe, Microkinetic modeling of
$H_2SO_4$ formation on Pt based diesel oxidation catalysts, Appl. Catal. B: Environ., 220, 348-335 (2018). https://doi.org/10.1016/j.apcatb.2017.08.025 - J. P. Dunn, P. R. Koppula, H. G. Stenger, and I. E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Calal. B: Environ., 19, 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
- D. W. Kwon and S. C. Hong, Enhancement of performance and sulfur resistance of ceria-doped V/Sb/Ti by sulfation for selective catalytic reduction of NOx with ammonia, RSC Adv., 6, 1169-1181 (2016). https://doi.org/10.1039/C5RA21913B
-
M. R. Bankmann, R. Brand, B. H. Enger, and J. Ohmer, Foming of high surface area
$TiO_2$ to catalyst supports, Catal. Today, 14, 225-242 (1992). https://doi.org/10.1016/0920-5861(92)80025-I - Y. Sarbassov, L. Duan, V. Manovic, and E. J. Anthony, Sulfur trioxide formation/emissions in coal-fired air-and oxy-fuel combustion processes: A review, Greenhouse Gas Sci. Technol., 8, 402-428 (2018). https://doi.org/10.1002/ghg.1767
-
X. Du, J. Xue, X. Wang, Y. Chen, J. Ran, and L. Zhang, Oxidation of sulfur dioxide over
$V_2O_5$ /$TiO_2$ catalyst with low vanadium loading: A theoretical study, J. Phys. Chem. C, 122(8), 4517-4523 (2018). https://doi.org/10.1021/acs.jpcc.8b00296 - M. A. V. Spronsen, J. W. M. Frenken, and I. M. N. Groot, Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts, Chem. Soc. Rev., 46, 4347-4374 (2017). https://doi.org/10.1039/C7CS00045F
- V. L. Boris and K. G. Andrew, Catalytic oxidation of hydrogen on platinum, J. Therm. Anal. Calorim, 112, 815-223 (2013). https://doi.org/10.1007/s10973-012-2567-0
-
G. J. Kim, S. M. Lee, S. C. Hong, and S. S. Kim, Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/
$TiO_2$ catalysts at room temperature; Role of the Pt valence state on this reaction?, RSC Adv., 8, 3626-3636 (2018). https://doi.org/10.1039/C7RA11294G -
K. Czupryn, I. Kocemba, and J. Rynkowski, Photocatalytic CO oxidation with water ove Pt/
$TiO_2$ catalysts, Reac. Kinet. Mech. Cat., 124, 187-201 (2018). https://doi.org/10.1007/s11144-017-1334-4 - Y. Liang, X. Ding, M. Zhao, J. Wang, and Y. Chen, Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts, Appl. Surf. Sci., 443(15), 336-344 (2018). https://doi.org/10.1016/j.apsusc.2018.03.032
-
G. J. Kim, D. W. Kwon, J. H. Shin, K. W. Kim, and S. C. Hong, Influence of the addition of vanadium to Pt/
$TiO_2$ catalyst on the selective catalytic oxidation of$NH_3$ to$N_2$ , Environ. Technol., 40(19), 2588-2600 (2019). https://doi.org/10.1080/09593330.2018.1554004 -
A. Borgna, T. F. Garetto, C. R. Apestequ, F. L. Normand, and B. Moraweck, Sintering of chlorinated Pt/
$\gamma$ -$Al_2O_3$ catalysts: An in situ study by X-ray absorption spectroscopy, J. Catal., 186, 433-441 (1999). https://doi.org/10.1006/jcat.1999.2557 -
S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/
$TiO_2$ catalyst, Appl. Catal. A: Gen., 398, 96-103 (2011). https://doi.org/10.1016/j.apcata.2011.03.018 - B. A. De Angelis, Metal-support and metal-additive effects in catalysis, J. Mol. Catal., 19, 289-289 (1983). https://doi.org/10.1016/0304-5102(83)80107-2
- S. Proch, J. Herrmannsdorfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, and J. Senker, Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis, Chem. Eur. J., 14, 8204-8212 (2008). https://doi.org/10.1002/chem.200801043
- C. Wang, X.K. Gu, H. Yan, Y. Lin, J. Li, D. Liu, W.X. Li, and J. Lu, Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst, ACS Catal., 7, 887-891 (2017). https://doi.org/10.1021/acscatal.6b02685