DOI QR코드

DOI QR Code

Semidiurnal Tidal Variation in Water Quality in Asan Bay during four Seasons

계절별로 조사한 조석에 따른 아산만의 수질 변동

  • Kim, Se Hee (Department of Ocean System Engineering, Mokpo National Maritime University) ;
  • Shin, Yong Sik (Department of Ocean System Engineering, Mokpo National Maritime University)
  • 김세희 (목포해양대학교 해양시스템공학과) ;
  • 신용식 (목포해양대학교 해양시스템공학과)
  • Received : 2020.05.14
  • Accepted : 2020.06.03
  • Published : 2020.06.16

Abstract

The Asan Bay, which has semi-diurnal tide with macro-tidal range, is affected by both freshwater discharge from the sluice gates in the sea dikes and tidal seawater inputs from the Yellow sea. Understanding water quality change in response to tides is important since tides can impact the short-term variations in physical and chemical water properties as well as the response of biological properties. The diel variations in water quality were seasonally investigated at 2 hour intervals from a fixed station in the Asan Bay. In the results, water temperature and salinity consistently fluctuated in phase or out of phase with tidal height. Especially salinity was positively correlated with tidal height. The concentrations of total suspended solids were higher in the bottom water than in the surface and fluctuated greatly over the tidal cycle recording higher values at low tide than at high tide. Nitrite+nitrate levels also fluctuated out of phase with tidal height and correlated negatively with tidal height. Other nutrients also showed a similar pattern. The pattern was distinct in July when freshwater was discharged before the field sampling. The concentrations of organic materials, total nitrogen and total phosphorus greatly fluctuated over the tidal cycle and were generally out of phase with tidal height. Most materials except particulate organic forms were correlated with salinity indicating that freshwater inputs were sources for the materials similarly to the dissolved inorganic nutrients. The results suggest that water quality (except dissolved oxygen and pH) and nutrients including organic materials was largely affected by tides in the Asan Bay.

아산만은 방조제 갑문을 통한 담수 유입과 외해인 서해로부터 해수가 유입되는 하구의 특성을 나타내는 곳으로, 반일주조형 조석을 가진 조수간만의 차가 크게 발생하는 해역이다. 하구에서 조석은 단기적인 물리·화학적 수질 특성 변화 및 생물학적 반응에 영향을 미칠 수 있어 조석에 따른 수질 변화를 파악하는 것은 중요하다. 본 연구는 아산만의 고정 정점에서 계절별로 2시간 간격으로 24시간 동안 조사하여 조석에 따른 수질 변동을 파악하고자 하였다. 연구 결과, 조위에 따른 수온과 염분의 변동이 확인되었고, 염분은 특히 조위와 유의한 양의 상관성을 보였다. 총부유물질의 경우 표층보다 저층의 농도가 높고, 조석에 따라 농도의 차이가 특히 저층에서 크게 나타났으며, 간조 시 높아지는 경향을 보였다. 영양염류인 아질산+질산성 질소도 조위 양상과 반대의 분포로 나타났으며, 상관성 분석 결과에서도 유의한 음의 상관성을 보였다. 나머지 영양염류들도 다소 약하지만 유사한 형태의 변동을 보였고, 담수 유입의 영향을 받은 7월에는 반대 경향이 더욱 명확하게 나타났다. 유기물 및 총질소, 총인의 경우 조석 주기 동안의 시간 변동이 다소 크게 나타났고, 대체적으로 조위와 반대의 분포를 보여 주었다. 입자 유기물을 제외하고 대부분 염분과 유의한 음의 상관성을 보여 무기질 영양염류와 유사하게 담수 유입이 공급원임을 암시하고 있다. 결국 아산만에서는 용존산소, pH 등 일부를 제외한 수질인자와 영양염류 및 유기물의 시간적 변동에 조석이 관여하여 단기적 영향을 미치고 있는 것으로 판단된다.

Keywords

References

  1. Ande F, Xisan J. 1989. Tidal effect on nutrient exchange in Xiangshan Bay, China. Mar Chem 27: 259-281. https://doi.org/10.1016/0304-4203(89)90051-0
  2. Arndt S, Vanderborght JP, Regnier P. 2007. Diatom growth response to physical forcing in a macrotidal estuary: coupling hydrodynamics, sediment transport, and biogeochemistry. J Geophys Res 112: 1-23.
  3. Choi Y. 1996. A Numerical Modeling of Tidal and Wind-Driven Current in Asan Bay. Department of Oceanography. Master of Science. Graduated school Chungnam National University.
  4. Davies OA, Ugwumba OA. 2013. Tidal Influence on Nutrients Status and Phytoplankton Population of Okpoka Creek, Upper Bonny Estuary, Nigeria. J Mar Biol 1-16.
  5. Gyeonggi-do. 1994. Basic Plan for Water System Improvement of Balan Donghwacheon River (Balancheon, Donghwacheon, Namjeoncheon, Geomgokcheon, Hadeungcheon, Eocheon, Gupocheon). Korea.
  6. Haas LW. 1977. The effect of the spring-neap tidal cycle on the vertical salinity structure of the James, York and Rappahannock Rivers, Virginia, USA. Estuar Coast Shelf S 5: 485-496. https://doi.org/10.1016/0302-3524(77)90096-2
  7. Herbert RA. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23: 563-590. https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  8. Huzzey LM, Brubaker JM. 1988. The formation of longitudinal fronts in a coastal plain estuary. J Geophys Res 93: 1329-1334. https://doi.org/10.1029/JC093iC02p01329
  9. Jeong Y, Cho M, Lee D, Doo S, Choi H, Yang J. 2016a. Nutrient Budget and Dam Effluence in Asan Bay. J Korean Soc Mar Environ Saf 22: 468-482. https://doi.org/10.7837/kosomes.2016.22.5.468
  10. Jeong Y, Cho M, Lee D, Doo S, Choi H, Yang J. 2016b. Seasonal Variations in Seawater Quality Due to Freshwater Discharge in Asan Bay. J Korean Soc Mar Environ Saf 22: 454-467. https://doi.org/10.7837/kosomes.2016.22.5.454
  11. Kim D, Kim K. 2008. Tidal and Seasonal Variations of Nutrients in Keunso Bay, the Yellow Sea. Ocean Polar Res 30: 1-10. https://doi.org/10.4217/OPR.2008.30.1.001
  12. Kim T. 2012. Long-term Effects of Seadikes on Estuarine Environment-Development of Numerical Modeling of Asan Bay. KEI 1-47.
  13. Korea Hydrographic and Oceanographic Agency (KHOA). 2007. www.khoa.go.kr.
  14. Korea Rural Community Corporation (KRC). 2008. www.ekr.or.kr.
  15. Korea Water Resources Corporation (K-Water). 2002. Guide map of the Korea River 'Uri Garam Gillajabi'. Ministry of Construction and Transportation, Korea.
  16. Li J, Dong S, Liu S, Yang Z, Peng M, Zhao C. 2013. Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River. Ecol Eng 60: 316-324. https://doi.org/10.1016/j.ecoleng.2013.07.029
  17. Ministry of Maritime Affairs & Fisheries. 2002. Official method to test marine environment.
  18. Montani S, Magni P, Shimamoto M, Abe N, Okutani K. 1998. The effect of a tidal cycle on the dynamics of nutrients in a tidal estuary in the Seto Inland Sea, Japan. J Oceanogr 54: 65-76. https://doi.org/10.1007/BF02744382
  19. Moon C-H, Park C, Lee S. 1993. Nutrients and Particulate Organic Matter in Asan Bay. Korean J Fish Aquat Sci 26: 173-181.
  20. Office of Hydrographic Affairs (OHA). 1992. Technical Reports. Office of Hydrographic Affairs, Korea, 111 pp.
  21. Park M-J. 2000. Modeling of Sediment Transport and Sand Bank Formation in a Macrotidal. Korea J Kor Soc Oceanogr 35: 1-10.
  22. Park M-J. 2008. Tidal Characteristics Change in the Asan Bay due to the Hwaong (Namyang Bay) Tidal Barrier. Korea J Kor Soc Oceanogr 13: 320-324.
  23. Park S-Y, Kim H-C, Kim P-J, Park G-S, Park J-S. 2007. Long-term Variation and Characteristics of Water Quality in the Asan Coastal Areas of Yellow Sea, Korea. J Environ Sci Int 16: 1411-1424. https://doi.org/10.5322/JES.2007.16.12.1411
  24. Parsons TR, Maita Y, Lalli CM. 1984. A Manual of Chemical and Biological Method for Seawater Analysis. Pergamon Press Inc., New York, pp 173.
  25. Rahm L, Conley D, Sanden P, Wulff F, Stalnacke P. 1996. Time series analysis of nutrient inputs to the Baltic Sea and changing DSi:DIN ratio. Mar Ecol Prog Ser 130: 221-228. https://doi.org/10.3354/meps130221
  26. Ryther JH. 1969. Photosynthesis and Fish Production in the Sea. Science 166: 72-76. https://doi.org/10.1126/science.166.3901.72
  27. Savenije HHG. 2005. Salinity and Tides in Alluvial Estuaries. Elsevier, Amsterdam.
  28. Seo Y-D. 2010. The seasonal monitoring and changes in physicochemical environments of coastal aquatic ecosystem in Asan Bay. Department of Environmental Engineering. Master of Engineering. Graduate School of Industry, Gwangju University.
  29. Sin Y, Hyun B, Bach QD, Yang S, Park C. 2012. Phytoplankton Size and Taxonomic Composition in a Temperate Estuary Influenced by Monsoon. Estuar Coast 35: 839-852. https://doi.org/10.1007/s12237-011-9470-y
  30. Sin Y, Jeong B, Park C. 2015. Semidiurnal Dynamics of Phytoplankton Size Structure and Taxonomic Composition in a Macrotidal Temperate Estuary. Estuar Coast 38: 546-557. https://doi.org/10.1007/s12237-014-9838-x
  31. Sin Y, Jeong B. 2015. Short-term variations of phytoplankton communities in response to anthropogenic stressors in a highly altered temperate estuary. Estuar Coast Shelf S 156: 83-91. https://doi.org/10.1016/j.ecss.2014.09.022
  32. Wong KC. 1995. The Hydrography at the Mouth of Delaware Bay: Tidally Averaged Distribution and Intratidal Variability. Estuar Coast Shelf S 41: 719-736. https://doi.org/10.1006/ecss.1995.0086