References
- Ahn J, Peng M, Park C, and Jeon Y (2012). A resampling approach for interval-valued data regression, Statistical Analysis and Data Mining, 5, 336-348. https://doi.org/10.1002/sam.11150
- Billard L and Diday E (2000). Regression analysis for interval-valued data. In Data Analysis, Classification, and Related Methods, (H. A. L. Kiers, J.-P Rassoon, P. J. F. Groenen, and M. Schader (eds), pp. 369-374), Springer-Verlag, Berlin.
- Billard L and Diday E (2002). Symbolic regression analysis. In Classification, Clustering and Data Analysis, (K. Jajuga, A. Sokolowski, and H.-H Bock (eds), pp. 281-288), Springer-Verlag, Berlin.
- Edwin KPC and Stanislaw HZ (2013). An Introduction to Optimization (4th ed), Wiley, New Jersey.
- Fagundes RAA, De Souza RMCR, and Cysneiros FJA (2014). Interval kernel regression, Neurocomputing, 128, 371-388. https://doi.org/10.1016/j.neucom.2013.08.029
- Im S and Kang K (2018). On regression analysis of interval-valued data, Journal of the Korean Data & Information Science Society, 29, 351-365. https://doi.org/10.7465/jkdi.2018.29.2.351
- Lima Neto EA and De Carvalho FAT (2008). Center and range method for fitting and linear regression model to symbolic interval data, Computational Statistics and Data Analysis, 52, 1500-1515. https://doi.org/10.1016/j.csda.2007.04.014
- Lima Neto EA and De Carvalho FAT (2010). Constrained linear regression models for symbolic interval-valued variables, Computational Statistics and Data Analysis, 54, 333-347. https://doi.org/10.1016/j.csda.2009.08.010
- Lima Neto EA and De Carvalho FAT (2017). Nonlinear regression applied to interval-valued data, Pattern Analysis and Applications, 20, 809-824. https://doi.org/10.1007/s10044-016-0538-y
- Lima Neto EA, De Carvalho FAT, and Tenorio C (2004). Univariate and multivariate linear regression methods to predict interval-valued features. In Advances in Artificial Intelligence 2004 (G.I. Webb and X. Yu (eds), Vol 3339, pp. 526-537), Springer, Berlin, Heidelberg.
- Nadaraya EA (1964). On estimating regression, Theory of Probability and Its Application, 10, 186-190. https://doi.org/10.1137/1110024
- Qin Z (2007). The relationships between CG, BFGS, and two limited-memory algorithms, Electronic Journal of Undergraduate Mathematics, 12, 5-20.
- Ruppert D, Sheather SJ, andWand MP (1995). An effective bandwidth selector for local least squares regression, Journal of the American Statistical Association, 90, 1257-1270. https://doi.org/10.1080/01621459.1995.10476630
- Watson GS (1964). Smooth regression analysis, Sankhya: The Indian Journal of Statistics, Series A, 26, 359-372.
- Xu W (2010). Symbolic data analysis: interval-valued data regression (Ph.D, dissertation), University of Georgia,