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Abstract
Interval-valued data, a type of symbolic data, is given as an interval in which the observation object is not a

single value. It can also occur frequently in the process of aggregating large databases into a form that is easy
to manage. Various regression methods for interval-valued data have been proposed relatively recently. In this
paper, we introduce a nonparametric regression model using the kernel function and a nonlinear regression model
for the interval-valued data. We also propose applying the local linear regression model, one of the nonparametric
methods, to the interval-valued data. Simulations based on several distributions of the center point and the range
are conducted using each of the methods presented in this paper. Various conditions confirm that the performance
of the proposed local linear estimator is better than the others.
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1. Introduction

Regression analysis models how the average trend of response variable Y changes for a given ex-
planatory variable X. Most data in this case correspond to single-valued data with only one fixed
observation value. However, there are data that are difficult to represent by a single value because
the observation objects have an internal structure and variation, and these are called symbolic data.
Representative examples of symbolic data include multiple-valued data, histogram-valued data, and
interval-valued data. Interval-valued data can be expressed as (1.1) in the form of intervals where the
observed values of the variables have lower and upper limit values.

xi = [xLi, xUi] . (1.1)

Here, xLi and xUi denote the lower and upper limit value of the ith observation of the variable X,
respectively.

Linear regression analysis of interval-valued data began to be studied in the early 2000s. Refer-
ences include Billard and Diday (2000, 2002), Lima Neto et al. (2004), Lima Neto and De Carvalho
(2010), Xu (2010), Ahn et al. (2012), Im and Kang (2018), and so on. Many studies have been done
on linear regression; however, there is limited research on nonlinear and nonparametric regression of
interval-valued data.

Fagundes et al. (2014) proposed an interval kernel regression model that uses the Nadaraya-
Watson type nonparametric regression estimator (IKR NW) for the center point and range values of
the intervals. An interval regression mixture model is also proposed therein, taking into account that
center points and ranges can be represented as independent models. In this model, there is a model
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which applies a kernel function to the center point and linear model to the range. However, there
is another model that applies a linear model to the center point and a kernel function to the range.
Recently, Lima Neto and De Carvalho (2017) proposed a nonlinear regression method (NLM) for
interval-valued data.

In this paper, we review a nonparametric regression and a nonlinear regression model that focuses
on interval-valued data. In addition, we propose a different version of nonparametric regression that
uses local linear estimation. We compare the properties of the estimates addressed in this paper
through various numerical simulations. The rest of the paper is organized as follows. In Section 2
we describe the interval-valued regression method using a Nadaraya-Watson type estimator. We also
propose an approach that uses local linear regression to the center point and range value. The nonlinear
regression model for interval-valued data is introduced in Section 3. In Section 4, we compare these
methods through simulations. Finally, we draw a brief conclusion in Section 5.

2. Regression model using kernel function

Unlike linear regression analysis, nonparametric regression analysis is a technique to estimate the
conditional expectation of response variable Y without assuming a distributional assumption when
the explanatory variable X is given. A model like equation (2.1) can be considered by finding a
functional relationship between response Y and explanatory variable X.

yi = m(xi) + ϵi, i = 1, . . . , n. (2.1)

Here, the function m is an unknown regression function, and ϵi’s are identically and independently
distributed with mean 0 and variance σ2. A common method for estimating unknown function m
is by using a kernel function. For given data (xi, yi), i = 1, . . . , n, the kernel regression estimator
proposed by Nadaraya (1964) and Watson (1964) is given by equation (2.2).

m̂h(x) =
∑n

i=1 Kh (x − xi) yi∑n
i=1 Kh (x − xi)

, (2.2)

where K is a kernel function with Kh(·) = h−1K(· /h) and h is the smoothing parameter, which repre-
sents the smoothness of the estimated regression function.

2.1. Interval Kernel regression: Nadaraya-Watson estimator

It is possible to apply the kernel regression model to interval-valued data. Fagundes et al. (2014)
proposed an interval kernel regression model that applies the Nadaraya-Watson regression estimator
to the center point and range, respectively.

Assume that we have n observations (xxxi, yi), i = 1, . . . , n from a response variable Y and p ex-
ploratory variables XXX = (X1, X2, . . . , Xp)t. Here, xxxi = (xi1, xi2, . . . , xip)t, xi j = [xLi j, xUi j], yi =

[yLi, yUi], i = 1, 2, . . . , n, j = 1, 2, . . . , p. If we define a vector composed of center points of interval-
valued data in an explanatory variable as xxxc = (xc

1, x
c
2, . . . , x

c
p)t, the matrix consisting of the center

points of each observation can be expressed as equation (2.3). The regression function of the center
point can be estimated using the center point of the response variable and the matrices XXXc, where

XXXc =
(
Xc

1, X
c
2, . . . , X

c
n

)
, Xc

i =
(
Xc

i1, . . . , X
c
ip

)t
, i = 1, 2, . . . , n. (2.3)

Similarly, we can define a vector composed of range points as xxxr = (xr
1, x

r
2, . . . , x

r
p)t and others such

as XXXr = (Xr
1, X

r
2, . . . , X

r
n), Xr

i = (Xr
i1, . . . , X

r
ip)t, i = 1, 2, . . . , n.
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Therefore, the relationship between the response variable and the explanatory variable is expressed
as a combination of the center and the range, which can be in the form of equation (2.4).

E(Y |XXX = xxx) =
[
mc(xxxc) − 0.5mr(xxxr),mc(xxxc) + 0.5mr(xxxr)

]
, (2.4)

where mc is a function of the center point and mr is a function of the range value. The estimated values
of mc and mr are based on the Nadaraya-Watson estimator, as shown in (2.5).

m̂c(xxxc) =
n∑

i=1

wc
i yc

i , m̂r(xxxr) =
n∑

i=1

wr
i y

r
i , (2.5)

where

wc
i =

Kh

(
d
(
xxxc, Xc

i

))
∑n

i=1 Kh

(
d
(
xxxc, Xc

i

)) , wr
i =

Kh

(
d
(
xxxr, Xr

i

))
∑n

i=1 Kh

(
d
(
xxxr, Xr

i

)) .
Here, we use the Gaussian kernel function K and bandwidth h given by

Kh
(
d
(
xxxc, Xc

i
))
=

1(√
2π

) 1
p

1
hp e−

d(xxxc ,Xc
i )

2h2 ,

where d(·) is the square of Euclidean distance between the two vectors.

2.2. Interval Kernel regression: local linear estimator

The Nadaraya-Watson estimator is known to have problems at the boundary of the data; however, local
linear regression can overcome these drawbacks. With regard to nonparametric regression, it is natural
to consider the local linear regression as well as the Nadaraya-Watson estimator. A multivariate
local linear polynomial is of the form β0 + βββ

t
1xxx, a hyperplane depending on p + 1 parameters β0 and

βββ1 = (β11, β12, . . . , β1p)t, xxx = (x1, x2, . . . , xp)t. Let K be a bounded, compactly supported p-variate
kernel function satisfying∫

K(xxx)dxxx = 1,
∫

xxxK(xxx)dxxx = 0, and
∫

xxxxxxtK(xxx)dxxx = µ2(K)III,

where µ2(K) =
∫

x2
i K(xxx)dxxx is independent of i.

Let HHH be a bandwidth matrix which satisfies some regularity conditions. The multivariate version
of local linear regression estimator is

m̂(xxx, 1,HHH) = eeet
1(XxXxXx

tWxWxWxXxXxXx)−1XxXxXx
tWxWxWxYYY ,

where

XxXxXx =


1 (xxx − XXX1)t

...
...

1 (xxx − XXXn)t


and

WxWxWx = diag {KHHH(xxx − XXX1), . . . ,KHHH(xxx − XXXn)} .
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We can put the vector of center points or range points for each local linear regression estimator of
center and range values, respectively.

In the case of a single explanatory variable, the local linear regression estimate is given in (2.6).

m̂(x) = β̂0 = n−1
n∑

i=1

{ŝ2(x; h) − ŝ1(x; h)(x − xi)}Kh(x − xi)yi

ŝ2(x; h)ŝ0(x; h) − ŝ1(x; h)2 , (2.6)

where

ŝr(x; h) = n−1
n∑

i=1

(x − xi)rKh(x − xi), r = 0, 1, 2.

For each data center point and range, we can obtain the regression function estimates m̂c and m̂r by
equation (2.6) and finally obtain the form of the interval by putting each estimate into equation (2.4).

3. Nonlinear regression model

Lima Neto and De Carvalho (2017) proposed the fit of a nonlinear regression model for interval-
valued data. It is similar to the regression model for each of the previously proposed center points
and ranges, but the difference is using the nonlinear function. Let yc and yr be the center point and
range of the response variable, respectively, and let xxxc

i and xxxr
i be the center point and range of the p

explanatory variables. When the unknown nonlinear regression functions for the center point and the
range are fc and fr, the regression model is given by equation (3.1).

yc
i = fc

(
xxxc

i , θθθ
c) + ϵci , yr

i = fr
(
xxxr

i , θθθ
r) + ϵri , (3.1)

where ϵci , ϵri ’s are error terms with mean 0 and variance σ2, θθθc, and θθθr are the parameter vectors for
the model for center point and range.

Nonlinear regression functions fc and fr can be estimated by minimizing the residual sum of
squares, as in (3.2).

min
θθθc,θθθr

 n∑
i=1

(
yc

i − fc
(
xxxc

i , θθθ
c))2
+

n∑
i=1

(
yr

i − fr
(
xxxc

i , θθθ
r))2

 . (3.2)

To optimize this nonlinear objective function, we can use the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm, stochastic gradient, conjugate gradient, and simulated annealing method. In this
paper, we employ the BFGS algorithm and conjugate gradient algorithm. See Edwin and Stanislaw
(2013) for more detailed descriptions of these algorithms.

To estimate the interval values of the response variables, the predicted values Ŷc and Ŷr are ob-
tained from the center-point model and the range model, respectively. And Ŷ = [ŶL, ŶU] is obtained
by using these estimates as in (3.3).

ŶL = min
{

Ŷc − Ŷr

2
, Ŷc +

Ŷr

2

}
, ŶU = max

{
Ŷc − Ŷr

2
, Ŷc +

Ŷr

2

}
. (3.3)

4. Simulation studies

Simulation was performed using open source statistical software R with version 3.5.1. We use cvTools
package for cross-validation, np package for nonparametric regression and optim function to obtain



Local linear regression analysis for interval-valued data 369

Figure 1: A scatter plot of data set from the Experiment 1.

parameter estimates in nonlinear regression models. Detailed usage and references can be found by
using help in R.

In the experimental data, n = 300 samples were generated independently for the center point
and the range. We use a Gaussian kernel function, and the smoothing parameter h is determined
with the direct plug-in method proposed by Ruppert et al. (1995). For comparison, we used the
lower boundary root mean squared error (RMSEL) and the upper boundary root mean squared error
(RMSEU) in (4.1) proposed by Lima Neto and De Carvalho (2008). 10-fold cross-validation was
applied separately to the modeling data and the validation data. The average values and their standard
errors were calculated from experiments repeated 100 times.

RMSEL =

√√
1
n

n∑
i=1

(yLi − ŷLi)2 RMSEU =

√√
1
n

n∑
i=1

(yUi − ŷUi)2. (4.1)

In this paper, the simulation is limited but considers types of data generation that can be inferred
later. The simulation consists of two experiments and assumes a nonlinear form for both the center
point and the range. Data sets for Experiment 1 in the simulation were generated as follows.

Experiment 1

Step 1. The center point and range of the explanatory variables xc
i , xr

i are generated from the following
uniform distribution.

xc
i ∼ U(−6, 6), xr

i ∼ U(1, 4).

Step 2. The errors for the center point and the range of the response variables are generated as follows.

ϵci ∼ N
(
0, 0.052

)
, ϵri ∼ N

(
0, 0.012

)
.

Step 3. The parameters to be estimated are defined as follows.

θθθc =
(
θc1, θ

c
2, θ

c
3

)
= (2, 3, 1), θθθr =

(
θr1, θ

r
2
)
= (0.25, 1).
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Table 1: Lower and upper boundary root mean squared errors in Experiment 1

NLM BFGS NLM CG IKR NW IKR LL
RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU
0.0508 0.0507 0.0507 0.0506 0.0571 0.0570 0.0547 0.0544

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

Values in parentheses correspond to standard errors.

Figure 2: Box plots of the parameter estimates from the nonlinear regression model in Experiment 1. The upper
and lower panels correspond to the BFGS algorithm and CG algorithm, respectively. The left and right panels

correspond to the center point and range, respectively.

Step 4. The center point and range of the response variable are generated from the following model.

yc
i =

θc1

θc2 + exp
(
θc3xc

i

) + ϵci , yr
i = θ

r
1 exp

(−θr2xr
i
)
+ ϵri .

Figure 1 draws an example scatter plot of data set from Experiment 1. Table 1 and Figure 2
indicated the results of Experiment 1. NLM BFGS and NLM CG correspond to the nonlinear regres-
sion model estimated by using the BFGS algorithm and the conjugate gradient algorithm. IKR NW
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Figure 3: A scatter plot of the center points for data from Experiment 1 and graph of the model (4.2) with
(θc1, θ

c
2, θ

c
3, θ

c
4) = (−0.8, 11, 4, 0.3).

Table 2: Results of applying incorrect form of nonlinear regression function in Example 1

NLM BFGS NLM CG IKR NW IKR LL
RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU
0.5069 0.5070 0.5164 0.5166 0.0571 0.0570 0.0547 0.0544

(0.0012) (0.0011) (0.0011) (0.0011) (0.0002) (0.0002) (0.0002) (0.0002)

Values in parentheses correspond to standard errors.

and IKR LL correspond to the kernel estimates by the Nadaraya-Watson method and the local linear
method.

The root mean squared errors in Table 1 show that the errors of the nonlinear regression models
are slightly lower than the ones of kernel methods. Among kernel methods the proposed local linear
estimates show better performance than Nadaraya-Watson estimates. In addition, Figure 2 shows box
plots of the parameter estimates for the center point and the range model. It can be seen that the
parameters in the range are estimated more accurately than the ones in the center point. In Table 1
and Figure 2, the two nonlinear methods show similar results.

However, this result comes from assuming the shape of a true model for parameter estimation.
In practice, it is not easy to consider the actual function by looking at a scatter plot of the interval-
valued data. To investigate this situation, Figure 3 shows a scatter plot of the center point data and
the nonlinear regression function that can be deduced from it in Experiment 1. The nonlinear re-
gression function, which is a candidate for the center point, is drawn from the form of (4.2) with
θθθc = (θc1, θ

c
2, θ

c
3, θ

c
4) = (−0.8, 11, 4, 0.3).

f
(
xc

i , θ
cθcθc
)
=

θc1xc
i√

θc2 + θ
c
3(xc

i )2
+ θc4. (4.2)

Under the center point model in (4.2), the results in Table 2 reveal that the nonlinear models show
poor performance; consequently, the results of the kernel method remain unchanged. The result can
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Figure 4: A scatter plot of data set from the Experiment 2.

therefore vary significantly depending on the correctness of the considered nonlinear function in the
case of the nonlinear regression model.

We now introduce the next experiment. The process of generating the data sets of Experiment 2 is
as follows; in addition, we include an example scatter plot drawn in Figure 4.

Experiment 2

Step 1. The center point and range of the explanatory variables xc
i , xr

i are generated from the following
uniform distribution.

xc
i ∼ U(−1, 1), xr

i ∼ U(0.1, 0.7).

Step 2. The errors for the center point and range of the response variables are generated as follows.

ϵci ∼ N
(
0, 0.052

)
, ϵri ∼ N

(
0, 0.012

)
.

Step 3. The parameters to be estimated are defined as follows.

θθθc =
(
θc1, θ

c
2

)
= (1, 3), θθθr =

(
θr1, θ

r
2
)
= (0.1, 1).

Step 4. The center point and range of the response variable are generated from the following model.

yc
i =

θc1 + (
θc2
π

xc
i

)2
π

exp(1)

+ ϵci , yr
i = θ

r
1 + θ

r
2
(
xr

i
)2
+ ϵri .

The results of Experiment 2 are presented in Figure 5 and Table 3. Figure 5 shows that the pa-
rameters for the center point in the nonlinear regression model using the BFGS algorithm are not well
estimated, but are correctly estimated using the CG algorithm. One of the referees requested us to
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Figure 5: Box plots of the parameter estimates from the nonlinear regression model in Experiment 2. The upper
and lower panels correspond to the BFGS algorithm CG algorithm. The left and right panels correspond to the

center point and range.

Table 3: Lower and upper boundary root mean squared errors in Experiment 2

NLM BFGS NLM CG IKR NW IKR LL
RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU
0.1468 0.1468 0.0511 0.0508 0.1057 0.1057 0.0614 0.0637

(0.0034) (0.0039) (0.0002) (0.0002) (0.0005) (0.0005) (0.0007) (0.0007)

Values in parentheses correspond to standard errors.

explain why this happened, we are not able to give an accurate explanation. It should be noted, how-
ever, that Qin (2007) mentioned that CG is generally the best method for well-conditioned problems.
Table 3 shows that the results might be bad if the parameters are not properly estimated in the non-
linear regression model. The nonlinear method using the CG algorithm shows lower errors than the
kernel regression cases. The nonlinear regression model shows lower errors only when the parameter
is correctly estimated. Even in this case, it should be noted that the nonparametric method using local
linear regression shows a relatively good performance.

However, it is difficult to guess the true form of the nonlinear regression function by only seeing
a scatter plot of the interval-valued data. To see this situation, a scatter plot of the center point data
and the nonlinear regression function that can be deduced from this plot in Experiment 2 are shown



374 Jungteak Jang, Kee-Hoon Kang

Figure 6: A scatter plot of the center points for data from Experiment 2 and graph of the model (4.4) with
θθθc = (θc1, θ

c
2) = (1, 1.5).

Table 4: Results of applying incorrect form of nonlinear regression function in Example 2

NLM BFGS NLM CG IKR NW IKR LL
RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU RMSEL RMSEU
0.3571 0.3570 0.2986 0.2986 0.1057 0.1057 0.0614 0.0637

(0.0045) (0.0046) (0.0016) (0.0016) (0.0005) (0.0005) (0.0007) (0.0007)

in Figure 6. Candidates for the nonlinear function of this center point regression can take the form of
equation (4.3) with the parameter θθθc = (θc1, θ

c
2) = (1, 1.5).

f
(
xc

i , θ
cθcθc
)
=

(
sin

(
θc1xc

i + θ
c
2

))−1.5
. (4.3)

In this case, the results in Table 4 show that nonparametric estimation using the kernel function
is very good, and the IKR LL model, which is a local linear regression method, is more excellent.
The performance of the two nonlinear regression methods becomes drastically worse. Again, we see
that the performance of the nonlinear regression model depends on the correctness of the proposed
function.

According to comments by the referees, we have increased the variances of errors in both of
Experiments 1 and 2. We do not include all results in this paper; however, we draw exactly the same
conclusions as the previous ones. Detailed numerical results can be requested from the authors.

5. Conclusion

In this paper, we briefly reviewed the Nadaraya-Watson estimator and nonlinear regression model
for analyzing interval-valued data. Additionally, we proposed a local linear regression estimator as
one of the nonparametric approaches. This paper uses simulation without comparing the theoretical
characteristics of the various methods. However, we admit that the general conclusion is limited
because not all situations can be considered in the simulation.
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The simulation results in this paper suggest that the local linear regression model shows better
performance than the Nadaraya-Watson estimator. This is true for near linear and nonlinear assump-
tions about the distribution of each center and range model. We can use the BFGS algorithm and
the conjugate gradient algorithm to estimate the nonlinear parameters in the model when nonlinear
regression models are used to fit the regression function.

Based on this, the nonlinear regression model and nonparametric models were compared with
each other under the assumption of a true nonlinear regression function. The NLM model performed
better and calculation speed was not lower. However, the IKR LL model showed relatively good
performance even under the assumption of a true nonlinear function, and was superior when it was
difficult to consider the true nonlinear function or if it was estimated incorrectly. Among the two NLM
methods, the conjugate gradient algorithm gave better results than the BFGS algorithm.

Therefore, the NLM model can have better prediction power in the case of a nonlinear structure
when the real function can be grasped easily by looking at a scatter plot of the interval data. However,
the IKR LL model has been found to be more predictable when it is difficult to estimate the actual
nonlinear function only by the data structure.
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