DOI QR코드

DOI QR Code

X-ray and gamma ray shielding behavior of concrete blocks

  • Received : 2019.08.01
  • Accepted : 2020.01.08
  • Published : 2020.08.25

Abstract

The shielding characteristics of two concrete blocks, widely used in the building industry in Mexico have been determined. These characteristics include the mass interaction coefficients, the linear attenuation coefficients and the half-value layers. The energy-dispersed X-ray fluorescence shows that the percentage mass content of each atom in the sample, and the atomic volume of the constituent elements of a material, plays an important role in its shielding capabilities. The total linear attenuation coefficients and the half-value layers were analyzed for a set of photon energies related to X-rays for diagnosis and cancer treatment with linear accelerators. Our results show that the concrete blocks have similar photon attenuation coefficients than the Portland concrete and better features than gypsum.

Keywords

References

  1. Q.C. Meisinger, C.M. Stahl, M.P. Andre, T.B. Kinney, I.G. Newton, Radiation protection for the fluoroscopy operator and staff, Am. J. Roentgenol. 207 (2016) 745-754. https://doi.org/10.2214/AJR.16.16556
  2. NCRP, Management of exposure to ionizing radiation: radiation protection guidance for the United States report No. 180, J. Radiol. Prot. 39 (2018) 4-9.
  3. K.S. Mann, J. Singla, V. Kumar, G.S. Sidhu, Verification of some building materials as gamma-ray shields, Radiat. Prot. Dosim. 151 (2012) 183-195. https://doi.org/10.1093/rpd/ncr455
  4. T. Croymans, F. Leonardi, R. Trevisi, C. Nuccetelli, S. Schreurs, W. Schroeyers, Gamma exposure from building materials - a dose model with expanded gamma lines from naturally occurring radionuclides applicable in nonstandard rooms, Constr. Build. Mater. 159 (2018) 768-778. https://doi.org/10.1016/j.conbuildmat.2017.10.051
  5. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022
  6. S. Ozen, C. Sengul, T. Erenoglu, U. Colak, Properties of Heavyweight concrete for structural and radiation shielding purposes, Arabian J. Sci. Eng. 41 (2016) 1573-1584. https://doi.org/10.1007/s13369-015-1868-6
  7. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate, Ann. Nucl. Energy 37 (2010) 910-914. https://doi.org/10.1016/j.anucene.2010.04.001
  8. H. Baltas, M. Sirin, A. Celik, I. Ustabas, A.M. El-Khayatt, Radiation shielding properties of mortars with minerals and ores additives, Cement Concr. Compos. 97 (2019) 268-278. https://doi.org/10.1016/j.cemconcomp.2019.01.006
  9. M.I. Sayyed, H.O. Tekin, O. Kilicoglu, O. Agar, M.H.M. Zaid, Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results, Results in Physics 11 (2018) 40-45. https://doi.org/10.1016/j.rinp.2018.08.029
  10. M. Alwaeli, Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes, J. Clean. Prod. 166 (2017) 157-162. https://doi.org/10.1016/j.jclepro.2017.07.203
  11. M. Cullu, H. Ertas, Determination of the effect of lead mine waste aggregate on some concrete properties and radiation shielding, Constr. Build. Mater. 125 (2016) 625-631. https://doi.org/10.1016/j.conbuildmat.2016.08.069
  12. E. Gallego, A. Lorente, H.R. Vega-Carrillo, Testing of a high-density concrete as neutron shielding material, Nucl. Technol. 168 (2009) 399-404. https://doi.org/10.13182/NT09-A9216
  13. M.G. Dong, O. Agar, H.O. Tekin, O. Kilicoglu, K.M. Kaky, M.I. Sayyed, A comparative study on gamma photon shielding features of various germanate glass systems, Compos. B Eng. 165 (2019) 636-647. https://doi.org/10.1016/j.compositesb.2019.02.022
  14. S.A. Issa, A.M.A. Mostafa, T.A. Hanafy, M. Dong, X. Xue, Comparison study of photon attenuation characteristics of Poly vinyl alcohol (PVA) doped with $Pb(NO_3)2$ by MCNP5 code, XCOM and experimental results, Prog. Nucl. Energy 111 (2019) 15-23. https://doi.org/10.1016/j.pnucene.2018.10.018
  15. T. Ozdemir, A. Gungor, I.K. Akbay, H. Uzun, Y. Babuccuoglu, Nano lead oxide and EPDM composite for development of polymer-based radiation shielding material: gamma irradiation and attenuation tests, Radiat. Phys. Chem. 144 (2018) 248-255. https://doi.org/10.1016/j.radphyschem.2017.08.021
  16. A. Kumar, R. Kaur, M.I. Sayyed, M. Rashad, M. Singh, A.M. Ali, Physical, structural, optical and gamma ray shielding behavior of (20+x) PbO - 10 BaO - 10 $Na_2O$ - 10 MgO - (50-x) $B_2O_3$ glasses, Phys. B Condens. Matter 552 (2019) 110-118. https://doi.org/10.1016/j.physb.2018.10.001
  17. M. Dong, X. Xue, S. Liu, H. Yang, Z. Li, M.I. Sayyed, O. Agar, Using iron concentrate in Liaoning Province, China, to prepare material for X-Ray shielding, J. Clean. Prod. 210 (2019) 653-659. https://doi.org/10.1016/j.jclepro.2018.11.038
  18. V.P. Singh, N. Badiger, Study of mass attenuation coefficients, effective atomic numbers and electron densities of carbon steel and stainless steels, Radioprotection 48 (2013) 431-443. https://doi.org/10.1051/radiopro/2013067
  19. M.C. Veale, L.L. Jones, B. Thomas, P. Seller, M.D. Wilson, K. Iniewski, Improved spectroscopic performance in compound semiconductor detectors for high rate X-ray and gamma-ray imaging applications: a novel depth of interaction correction technique, Nucl. Instrum. Methods Phys. Res. 927 (2019) 37-45. https://doi.org/10.1016/j.nima.2019.01.045
  20. C.A. Marquez-Mata, H.R. Vega-Carrillo, J.M. Chavez Mata, J.J. Araiza-Ibarra, J.J. Ortega-Sigala, M.I. Escalona-Llaguno, A. Garcia-Duran, Characterization of six types of Mexican Onyx, Appl. Radiat. Isot. 146 (2019) 139-144. https://doi.org/10.1016/j.apradiso.2019.01.012
  21. S. Yasmin, M.U. Khandaker, B. S Barua, M.N. Mustafa, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, Ionizing Radiation Shielding Effectiveness of Decorative Building Materials (Porcelain and Ceramic Tiles) Used in Bangladeshi Dwellings, Indoor and Built Environment, 2018, https://doi.org/10.1177/1420326X18798883.
  22. H.R. Vega-Carrillo, K.A. Guzman-Garcia, A. Rodriguez-Rodriguez, C.A. Juarez-Alvarado, V.P. Singh, H.A. de Leon-Martinez, Photon and neutron shielding features of quarry tuff, Ann. Nucl. Energy 112 (2018) 411-417. https://doi.org/10.1016/j.anucene.2017.10.042
  23. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, National Institute of Standards and Technology, Gaithersburg, MD, 2010 [Online] Available:, version 1.5. http://physics.nist.gov/xcom. (Accessed 26 May 2019).
  24. L. Gerward, N. Guilbert, K. Bjorn Jensen, H. Levring, X-ray absorption in matter: re-engineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24. https://doi.org/10.1016/S0969-806X(00)00324-8
  25. X-5 Monte Carlo Team, MCNP - a general Monte Carlo N-particle transport code, in: Volume I: Overview and Theory, Los Alamos Natl. Lab., 2003. LA-UR-03-1987, Version 5.
  26. S. Agostinelli, J. Allison, K. Amako, Geant4 - a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  27. NCRP, Structural Shielding Design for Medical X-Ray Imaging Facilities, National Council of Radiation and Measurements, 2005. Report No. 172.
  28. INEGI, Percentage of Housing with Walls of Solid Materials, National Institute of Statistics and Geography of Mexico, 2019. http://en.www.inegi.org.mx/.
  29. J. Arrieta Freyre, E. Pena Herrera Deza, Fabricacion y bloques de concreto con una mesa vibradora. Centro Peruano Japones de Investigaciones Sísmicas y Mitigacion de Desastres, Programa Científico, 2001, pp. 10-15. PC-CISMID, 1999-2000.
  30. NMX, Building Industry-Aggregates-Determination of the Specific Mass and Water Absorption of Coarse Aggregates, Mexican Standard, 2014. NMX-C-164-ONNCCE-2014.
  31. Lenntech Data, Elementos químicos ordenados por su masa atomica [Online] Available: https://www.lenntech.es/tabla-peiodica/masa-atomica.htm, 2019.

Cited by

  1. Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation vol.53, pp.5, 2020, https://doi.org/10.1016/j.net.2020.11.009
  2. AIEgen‐enhanced protein imaging: Probe design and sensing mechanisms vol.2, pp.3, 2021, https://doi.org/10.1002/agt2.41
  3. Ge20Se80-xBix (x ≤ 12) chalcogenide glasses for infrared and gamma sensing applications: structural, optical and gamma attenuation aspects vol.32, pp.11, 2020, https://doi.org/10.1007/s10854-021-06101-3
  4. Experimental and numerical evaluation of gamma-ray attenuation characteristics of concrete containing high-density materials vol.294, 2021, https://doi.org/10.1016/j.conbuildmat.2021.123614