참고문헌
- Ahn JM. The current trend in augmentation rhinoplasty. Facial Plast Surg 2006;22:61-9. https://doi.org/10.1055/s-2006-939954
- Godin MS, Waldman SR, Johnson CM Jr. Nasal augmentation using Gore-Tex: a 10-year experience. Arch Facial Plast Surg 1999;1:118-21. https://doi.org/10.1001/archfaci.1.2.118
- Kim YS, Shin YS, Park DY, et al. The application of three-dimensional printing in animal model of augmentation rhinoplasty. Ann Biomed Eng 2015;43:2153-62. https://doi.org/10.1007/s10439-015-1261-3
- Xu Y, Fan F, Kang N, et al. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing. Plast Reconstr Surg 2015;135:451-8. https://doi.org/10.1097/PRS.0000000000000856
- Yi HG, Choi YJ, Jung JW, et al. Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty. J Tissue Eng 2019 Jan 16 [Epub]. https://doi.org/10.1177/2041731418824797.
- Baker SC, Rohman G, Southgate J, et al. The relationship between the mechanical properties and cell behaviour on PLGA and PCL scaffolds for bladder tissue engineering. Biomaterials 2009;30:1321-8. https://doi.org/10.1016/j.biomaterials.2008.11.033
-
Li WJ, Danielson KG, Alexander PG, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(
$\epsilon$ -caprolactone) scaffolds. J Biomed Mater Res Part 2003;67A:1105-14. https://doi.org/10.1002/jbm.a.10101 - Pina S, Ferreira JMF. Bioresorbable plates and screws for clinical applications: a review. J Healthc Eng 2012;3:243-60. https://doi.org/10.1260/2040-2295.3.2.243
- Oh SH, Park IK, Kim JM, et al. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 2007;28:1664-71. https://doi.org/10.1016/j.biomaterials.2006.11.024
- Park BK. Biodegradable polymers for tissue engineering: review article. J Biomed Eng Res 2015;36:251-63. https://doi.org/10.9718/JBER.2015.36.6.251
- Nava MM, Draghi L, Giordano C, et al. The effect of scaffold pore size in cartilage tissue engineering. J Appl Biomater Funct Mater 2016;14:e223-9.
- Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 2003;24:4011-21. https://doi.org/10.1016/S0142-9612(03)00284-9
- Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 2015;227:746-56. https://doi.org/10.1111/joa.12257
- Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 2013;19:485-502. https://doi.org/10.1089/ten.teb.2012.0437
- Pina S, Ribeiro VP, Marques CF, et al. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials (Basel) 2019;12:1824. https://doi.org/10.3390/ma12111824
- Wang X, Chang J, Wu C. Bioactive inorganic/organic nanocomposites for wound healing. Appl Mater Today 2018;11: 308-19. https://doi.org/10.1016/j.apmt.2018.03.001
- Park YJ, Cha JH, Bang SI, et al. Clinical application of three-dimensionally printed biomaterial polycaprolactone (PCL) in augmentation rhinoplasty. Aesthetic Plast Surg 2019;43: 437-46. https://doi.org/10.1007/s00266-018-1280-1
- Yamane S, Iwasaki N, Kasahara Y, et al. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res A 2007;81: 586-93.
- Im GI, Ko JY, Lee JH. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size. Cell Transplant 2012;21:2397-405. https://doi.org/10.3727/096368912X638865
- Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration. Mater Sci Eng C Mater Biol Appl 2016;61:922-39. https://doi.org/10.1016/j.msec.2015.12.087
- Salem AK, Stevens R, Pearson RG, et al. Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 2002;61:212-7. https://doi.org/10.1002/jbm.10195
- Whang K, Healy KE, Elenz DR, et al. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng 1999;5:35-51. https://doi.org/10.1089/ten.1999.5.35
- Griffon DJ, Sedighi MR, Schaeffer DV, et al. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2006 May;2:313-20.
- Stenhamre H, Nannmark U, Lindahl A, et al. Influence of pore size on the redifferentiation potential of human articular chondrocytes in poly(urethane urea) scaffolds. J Tissue Eng Regen Med 2011;5:578-88. https://doi.org/10.1002/term.350
- Li Y, Meng H, Liu Y, et al. Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. ScientificWorldJournal 2015;2015:685690