DOI QR코드

DOI QR Code

우주발사체 발사 시 음향하중 저감을 위한 발사대 설계

Design of launch pad for mitigating acoustic loads on launch vehicle at liftoff

  • 투고 : 2020.06.17
  • 심사 : 2020.07.18
  • 발행 : 2020.07.31

초록

우주발사체는 발사 시 추진장치에서 발생하는 고강도 소음에 의한 음향하중의 영향을 받는다. 로켓소음은 발사체와 페이로드 내 전자 및 기계 부품의 손상 및 오작동을 유발할 수 있기 때문에 음향하중의 예측 및 저감은 설계에 있어 중요한 고려사항이다. 본 논문에서는 로켓 소음의 생성 및 발사대의 음향설계 기법에 대한 최신 연구동향을 논하였다. 특히, 새로운 발사대 설계 방법론의 예로서 일본 Epsilon 로켓 발사대의 개발과정을 기술하였다. 전산유체역학 모사 및 1/42 축소모형 실험을 통하여 설계된 발사대의 음향하중 저감 효과를 Epsilon 로켓의 실제 비행 데이터 분석을 통하여 검증하였다.

At liftoff, launch vehicles are subject to harmful acoustic loads due to the intense acoustic waves generated by propulsion systems. Because these waves can cause electronic and mechanical components of launch vehicles and payloads to fail, predicting and mitigating acoustic loads is an important design issue. This article presents the latest information about the generation of acoustic waves and the acoustic design methods applicable to the launch pad. The development of the Japanese Epsilon solid launcher is given as an example of the new methodology for launch pad design. Computational fluid dynamics together with 1/42 scale model testing were performed for this development. Effectiveness of the launch pad design to reduce acoustic loads was confirmed by the post-flight analysis.

키워드

참고문헌

  1. S. J. Archer, "Structural vibration prediction," NASA Tech. Rep., SP-8050, 1970.
  2. J. Onoda and K. Minesugi, "Estimation of mechanical environment of M-V satellite launcher," Proc. JSASS/JSME Structures Conference, 229-232 (1997).
  3. C. K. W. Tam, "Mach wave radiation from high-speed jets," AIAA J. 47, 2440-2448 (2009). https://doi.org/10.2514/1.42644
  4. K. M. Eldred, "Acoustic loads generated by the propulsion system," NASA Tech. Rep., SP-8072, 1971.
  5. J. Varnier, "Experimental study and simulation of rocket engine freejet noise," AIAA J. 39, 1851-1859 (2001). https://doi.org/10.2514/2.1199
  6. S. Tsutsumi, R. Takaki, H. Ikaida, and K. Terashima, "Numerical aeroacoustics analysis of a scaled solid jet impinging on flat plate with exhaust hole," 30th International Symposium on Space Technology and Science, 2015-o-2-05 (2015).
  7. J. Panda and R. Mosher, "Microphone phased array to identify liftoff noise sources in model-scale tests," J. Spacecraft Rockets, 50, 1002-1012 (2013). https://doi.org/10.2514/1.A32433
  8. S. Tsutsumi, R. Takaki, Y. Nakanishi, K. Okamoto, and S. Teramoto, "Acoustic generation mechanism of a supersonic jet impinging on deflectors," AIAA Paper 2014-0882 (2014).
  9. T. Nonomura, Y. Goto, and K. Fujii, "Aeroacoustic waves generated from a supersonic jet impinging on an inclined flat plate," Int. J. Aeroacoustics, 10, 401-425 (2011). https://doi.org/10.1260/1475-472X.10.4.401
  10. M. Akamine, Y. Nakanishi, K. Okamoto, S. Teramoto, T. Okunuki, and S. Tsutsumi, "Acoustic phenomena from correctly expanded supersonic jet impinging on inclined plate," AIAA J. 53, 2061-2067 (2015). https://doi.org/10.2514/1.J053953
  11. C. Brehm, J. A. Housman, and C. C. Kiris, "Noise generation mechanisms for a supersonic jet impinging on an inclined plate," J. Fluid Mech. 797, 802-850 (2016). https://doi.org/10.1017/jfm.2016.244
  12. M. Kurokawa, S. Teramoto, and K. Okamoto, "Acoustic wave generation from two-dimensional supersonic inviscid jet impinging on inclined plate," AIAA J., (2020).
  13. J. Panda, R. N. Mosher, and B. J. Porter, "Noise source identification during rocket engine test firings and a rocket launch," J. Spacecraft Rockets, 51, 1761-1772 (2014). https://doi.org/10.2514/1.A32863
  14. J. Varnier and W. Raguenet, "Experimental characterization of the sound power radiated by impinging supersonic jets," AIAA J. 40, 825-831 (2002). https://doi.org/10.2514/2.1746
  15. V. V. Koudriavtsev, and A. V. Safronov, "Noise generation at supersonic jet interaction with inclined deflector," Int. Congress and Exhibition on Noise Control Engineering, 139-142 (2001).
  16. J. Haynes and R. J. Kenny, "Modifications to the NASA SP-8072 distributed source method II for ares I lift-off environment predictions," AIAA Paper 2009-3160 (2009).
  17. D. Gely, G. Elias, C. Bresson, H. Foulon, S. Radulovic, and P. Roux, "Reduction of supersonic jet noise. application to the ariane 5 launch vehicle," AIAA Paper 200-2026 (2000).
  18. N. Cacqueray, C. Bogey, and C. Bailly, "Investigation of a high-mach-number overexpanded jet using large-eddy simulation," AIAA J. 49, 2171-2182 (2011). https://doi.org/10.2514/1.J050952
  19. J. Varnier, J. F. Piet, D. Gely, G. Elias, and S. Radulovic, "Modeling of the acoustic environment on the ariane 5 fairing using small scale test data," AIAA Paper 1996-1721 (1996).
  20. D. Gely, G. Elias, F. Mascanzoni, and H. Foulon, "Acoustic environment of the vega launch vehicle at lift-off," Proc. 4th European Congress on Acoustics, 821-826 (2005).
  21. N. Dougherty and S. Guest, "A correlation of scale model and flight aeroacoustic data for the space shuttle vehicle," AIAA Paper 1984-2351 (1984).
  22. D. D. Counter and J. Houston, "Ares I scale model acoustic test lift-off acoustics," J. Acoust. Soc. Am. 130, 2542 (2011).
  23. D. Casalino, S. Santini, M. Genito, and V. Ferrara, "Rocket noise sources localization through a tailored beam-forming technique" AIAA J. 50, 2146-2158 (2012). https://doi.org/10.2514/1.J051479
  24. J. Houston, D. Counter, and C. Giacomoni, "SLS scale model acoustic test liftoff results and comparisons," 29th Aerospace Testing Seminar (2015).
  25. H. Himelblau, J. E. Manning, A. G. Piersol, and S. Rubin, "Dynamic environmental criteria," NASA Tech. Rep., HDBK-7005, 2001.
  26. J. K. Ignatius, S. Sathiyavageeswaran, and S. R. Chakravarthy, "Hot-flow simulation of aeroacoustics and suppression by water injection during rocket lift-off," AIAA Journal, 53, 235-245 (2015). https://doi.org/10.2514/1.J053078
  27. S. Sankaran, J. K. Ignatius, R. Ramkumar, T. N. V. Satyanarayana, S. R. Chakravarthy, and N. R. Panchapakesan, "Suppression of high mach number rocket jet noise by water injection," J. Spacecraft Rockets, 46, 1164-1170 (2009). https://doi.org/10.2514/1.43421
  28. W. Sarae, K. Terashima, S. Tsutsumi, M. Takegoshi, H. Kobayashi, and A. Mori, "Summary of acoustic design for H3 launch complex," J. Acoust. Soc. Am. 146, 3001 (2019).
  29. T. Shimizu, M. Hirai, S. Tsutsumi, R. Takaki, and M. Arita, "Study on attenuation of sound by droplets," J. Japan Society for Aeronautical and Space Sciences, 57, 71-76 (2009).
  30. S. Tsutsumi, T. Ishii, K. Ui, S. Tokudome, and K. Wada, "Study on acoustic prediction and reduction of epsilon launch vehicle at liftoff," J. Spacecraft Rockets, 52, 350-361 (2015). https://doi.org/10.2514/1.A33010
  31. S. Tsutsumi, T. Ishii, K. Ui, S. Tokudome, and K. Wada, "Assessing prediction and reduction technique of lift-off acoustics using epsilon flight data," AIAA Paper 2015-1007 (2015).
  32. S. Tsutsumi and K. Terashima, "Validation and verification of a numerical prediction method for lift-off acoustics of launch vehicles," Trans. Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 15, 7-12 (2017). https://doi.org/10.2322/tastj.15.7
  33. S. Tsutsumi, W. Sarae, and K. Terashima, "Effect of rocket engine clustering on acoustic level of H3 launch vehicle at lift-off," Proc. 32th International Symposium on Space Technology and Science, 2019-g-12 (2019).
  34. D. Palmieri, D. Nicolini, P. M. Roviera, C. Kiris, M. Barad, B. Vu, and D. Chesnutt, "Design and validation of VEGA launch pad modifications to reduce payload acoustic environment at lift-off," Proc. 68th International Astronautical Congress, IAC-17-D2.2.2 (2017).
  35. S. Tsutsumi, S. Kato, K. Fukuda, R. Takaki, and K. Ui, "Effect of deflector shape on acoustic field of launch vehicle at lift-off," AIAA Paper 2009-0328 (2009).
  36. T. Nonomura, H. Honda, Y. Nagata, M. Yamamoto, S. Morizawa, S. Obayashi, and K. Fujii, "Plate-angle effects on acoustic waves from supersonic jets impinging on inclined plates," AIAA J. 54, 816-827 (2016). https://doi.org/10.2514/1.J054152