DOI QR코드

DOI QR Code

블레이드 파편 봉쇄를 위한 컨테인먼트 케이스 연구 동향

Research Survey of the Containment Case for Damage Protection from Blade Fragments

  • 채승호 (한국항공대학교 항공우주 및 기계공학부) ;
  • 안상현 (한국항공대학교 항공우주 및 기계공학부) ;
  • 이수용 (한국항공대학교 항공우주 및 기계공학부) ;
  • 노진호 (한국항공대학교 항공우주 및 기계공학부)
  • Chae, Seungho (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Ahn, Sanghyeon (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Soo-Yong (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Roh, Jin-Ho (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2019.12.10
  • 심사 : 2020.05.17
  • 발행 : 2020.06.30

초록

항공기 엔진 내의 파손된 블레이드가 케이스를 관통하여 외부로 나가게 되면, 동체에 부딪혀 승객의 안전을 위협하게 된다. 따라서 엔진 케이스 설계 시 항공청의 안전성 평가 인증을 받아야한다. 본 논문에서는 국내의 독자적인 엔진 개발을 위해 필요한 엔진 케이스의 컨테인먼트 인증 요구조건과 개발 기술에 대하여 조사하였다. 미국과 유럽의 항공청에서 제시하는 컨테인먼트 안전성 요구 조건을 정리하고 이 인증에 부합하는 케이스의 파편 봉쇄를 검증하는 실험적/해석적 방법에 대하여 확인하였다. 컨테인먼트 케이스에 대한 최근의 연구를 분석하여 케이스 개발 시 검증 방법을 제시하고자 한다.

If a broken blade in the aircraft engine penetrates the casing and ejects outside the aircraft, it will impact the fuselage, threatening the safety of the passengers. Thus, the development of a engine case should be certified for stability evaluation by the Aviation Administration. In this paper, we investigated the requirements and development technology for the containment certification of the engine casing necessary for the independent engine development in the country. An experimental/analytical method has been identified to summarize the contact safety requirements presented by the U.S. and European aviation agencies to verify the containment of debris in the casing corresponding to this certification. Also, we analyzed recent research on the containment casing and verification methods in casing development.

키워드

참고문헌

  1. Simon Hradecky, "Accident: Southwest B737 near Philadelphia on Apr 17th 2018, uncontained engine failure takes out passenger window," The Aviation Herald, http://www.avherald.com/
  2. D. D. Le, "Evaluation of light weight material concepts for aircraft turbine engine rotor failure protection," Federal Aviation Administration, DOT/FAA/AR-96/110, 1997.
  3. http://www.avherald.com/
  4. B. Rideley, "Impact studies of containment ring during blade shed in turbofan engine," Department of Mechanical and Industrial Engineering University of Torronto, 2018.
  5. H. J. Xuan, X. Lu, W. R. Hong and L. F. Liao, "Review of aero-engine case containment research," Journal of Aerospace Power, Vol. 8, pp. 1860-1870, 2010.
  6. https://www.rolls-royce.com/products-and-services/civil-aerospace/airlines/trent-900.aspx#section-technology
  7. https://www.geaviation.com/commercial/engines/genx-engine
  8. Federal Aviation Regulation Part 33, Federal Aviation Administration, 1984.
  9. Certification Specification for Engines CS-E, European Aviation Safety Agency, 2007
  10. Advisory Circular AC 33-5, Federal Aviation Administration, 1990
  11. Husband Jason Burkley, "Developing an efficient FEM structural simulation of a fan blade off test in a turbofan jet engine," PhD Thesis, University of Sakatchewan, 2007.
  12. J. Heady, J. M. Pereira and C. Ruggeri, "Establishing a ballistic test methodology for documenting the containment capability small gas turbine engine compressors," NASA Glenn Research Center, 2009
  13. Vander Klok, Andrew Joe. Experimental impact testing and analysis of composite fan cases. Michigan State University, 2016.
  14. Qing He, haijun Xuan, Lulu Liu, Weirong hong and Rongren Wu, “Perforation of aero-engine fan casing by a single rotating blade,” Aerospace Science and Technology, Vol. 25, No. 1, pp. 234-241, 2011. https://doi.org/10.1016/j.ast.2012.01.010
  15. He, Qing, et al. "Simulation methodology development for rotating blade containment analysis." Journal of Zhejiang University SCIENCE A 13.4, pp. 239-259, 2012
  16. C. O. Gunderson, "Study to improve airframe turbine engine rotor blade containment," Federal Aviation Administration, Report No.: FAA-RD-77-44, 1977
  17. K. F. Heermann, K. R. McClure and R. H. Eriksson, "Study to improve turbine engine rotor blade containment," Report No.: DOT-FAA-RD-77-100, Federal Aviation Administration, 1977
  18. J. J. M. Payen, "Containment of turbine engine fan blade," SNECMA, 6th International Symposium on Air Breathing Engines, AIAA, Symposium papers A83-35801, 16-07, 1983
  19. Sarkar, S., and S. N. Atluri. "Effects of multiple blade interaction on the containment of blade fragments during a rotor failure." Finite Elements in Analysis and Design 23.2-4 pp. 211-223, 1996. https://doi.org/10.1016/S0168-874X(96)80008-4
  20. Roberts, Gary D., et al. "Impact testing and analysis of composites for aircraft engine fan cases." Journal of Aerospace Engineering 15.3 pp. 104-110 2002. https://doi.org/10.1061/(ASCE)0893-1321(2002)15:3(104)
  21. Shmotin, Yuri, et al. "Numerical analysis of aircraft engine fan blade-out." 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2006.
  22. J. A. Mathis, "Design procedures and analysis of turbine rotor fragment hazard containment," Federal Aviation Administration, Report No.: DOT-FAA-AR-10-23-P1, 1997.
  23. D. A. Shockey, J. H. Giovanola and J. W. Simons, "Advanced armor technology: application potential for engine fragment barriers for commercial aircraft," Federal Aviation Administration, Report No.: DOT-FAA-AR-97-98, 1997
  24. A. D. Lane, "Development of an advanced fan blade containment system," Federal Aviation Administration, Report No.: DOT-FAA-RD-77-100, 1977.
  25. D. Le, "Evaluation of lightweight material concepts for aircraft turbine engine rotor failure protection," Federal Aviation Administration, Report No.: DOT-FAA-AR-96-110, 1997
  26. C. L. Stotler and A. P. Coppa, "Containment of composite fan blades," Report No.: NASA-CR-159544, 1979.
  27. Sharda, J., et al. "Modeling of multilayer composite fabrics for gas turbine engine containment systems." Journal of Aerospace Engineering 19.1 (2006): 38-45. https://doi.org/10.1061/(ASCE)0893-1321(2006)19:1(38)
  28. Naik, D., et al. "Development of reliable modeling methodologies for fan blade out containment analysis -Part I: Experimental studies." International Journal of Impact Engineering 36.1, pp. 1-11, 2009. https://doi.org/10.1016/j.ijimpeng.2008.03.007
  29. Stahlecker, Z., et al. "Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: Finite element analysis." International Journal of Impact Engineering 36.3 pp. 447-459, 2009. https://doi.org/10.1016/j.ijimpeng.2008.08.004
  30. He, Q., Xie, Z., Xuan, H., Liu, L., & Hong, W. "Multi-blade effects on aero-engine blade containment." Aerospace Science and Technology, 49, pp. 101-111. 2016 https://doi.org/10.1016/j.ast.2015.11.037
  31. He, Z., Xuan, H., Bai, C., Hu, Y., Cong, P., Bai, H., & Hong, W. "Containment tests and analysis of soft wall casing fabricated by wrapping Kevlar fabric around thin metal ring." Aerospace Science and Technology, 61, pp. 35-44, 2017. https://doi.org/10.1016/j.ast.2016.11.018
  32. Lulu, L. I. U., Zhenhua, Z. H. A. O., Wei, C. H. E. N., & Gang, L. U. O. "Influence of pre-tension on ballistic impact performance of multi-layer Kevlar 49 woven fabrics for gas turbine engine containment systems." Chinese Journal of Aeronautics, 31(6), pp. 1273-1286, 2018. https://doi.org/10.1016/j.cja.2018.03.021
  33. Zekan, H. E., Haijun, X. U. A. N., Conger, B. A. I., Manli, S. O. N. G., & Zhuoshen, Z. H. U. "Containment of soft wall casing wrapped with Kevlar fabric." Chinese Journal of Aeronautics, 32(4), pp. 954-966, 2019. https://doi.org/10.1016/j.cja.2019.01.008
  34. S. D. Rajan, B. Mobasher and Z. Stahlecker, "Explicit finite element modeling of multilayer composite fabric for gas turbine engine containment systems phase 3," part 1: Arizona State University Material Model and Numerical Simulation, Federal Aviation Administration, Report No.: DOT-FAA-AR-10-23-P1, 2011.
  35. K. S. Carney, J. M. Pereira, D. M. Revilock and P. Matheny, "Jet engine fan blade containment using an alternate geometry," International Journal of Impact Engineering, Vol. 36, pp. 720-728, 2009. https://doi.org/10.1016/j.ijimpeng.2008.10.002