DOI QR코드

DOI QR Code

Toxic effects of new anti-fouling agents (diuron and irgarol) on the embryogenesis and developmental delay of sea urchin, Hemicentrotus pulcherrimus

신규방오도료물질(Diuron, Irgarol)이 말똥성게(Hemicentrotus pulcherrimus)의 배아발생과 지연에 미치는 독성영향

  • Choi, Hoon (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Park, Yun-Ho (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Lee, Ju-Wook (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Kwon, Ki-Young (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS)) ;
  • Hwang, Un-Ki (Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS))
  • 최훈 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 박윤호 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 권기영 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2020.10.13
  • Accepted : 2020.10.21
  • Published : 2020.12.31

Abstract

The aim of this study was to define the toxic effects of diuron and irgarol, which are new-antifouling agents, on the fertilization rate and normal embryogenesis rate in the sea urchin, Hemicentrotus pulcherrimus. In addition, the study was intended to confirm the hindrance of development in sea urchins. The fertilization rate of H. pulcherrimus was not decreased by the tested concentrations. However, the normal embryogenesis rate was decreased in a concentration-dependent manner. The 50% effective concentrations (EC50) of normal embryogenesis rate were 7.12 mg L-1 and 2.31 mg L-1, respectively. As the embryos developed into pluteus larvae, after 18 h of exposure to diuron and irgarol at EC50, development of the early gastrula stage was delayed, and significant developmental delays were observed after 24 h. After this, continuous developmental delays were observed in the process leading to the early gastrular, gastrular, early pluteus, and pluteus stages. Therefore, the toxic effects of diuron and irgarol on sea urchins were attributed to the delay in the developmental processes in the early life stages. Diuron and irgarol are highly persistent in the environment and have known-well toxic effects on various marine organisms including invertebrates, as shown in this study. Therefore, it is urgent to establish an environmental protection strategy to prevent the pollution of and preserve the marine environment.

본 연구에서는 신방오도료 Diuron과 Irgarol이 해양 무척추동물인 말똥성게(Hemicentrotus pulcherrimus)에게 미치는 독성영향을 10min-수정률과 64 h-정상 유생발생률의 EC50, NOEC, LOEC 값을 통하여 확인하였으며, 해당 오염물질이 H. pulcherrimus의 초기발생단계에 미치는 지연효과를 확인하고자 하였다. 실험결과, Diuron과 Irgarol은 시험농도(40mg L-1)에서 H. pulcherrimus의 수정률에 영향을 미치지 않았으며, 정상 유생발생률에 대한 EC50값은 각각 7.12mg L-1, 2.31mg L-1로 나타났다. 또한, 수정란이 pluteus 유생으로 발달하는 과정에서 반수영향농도의 Diuron과 Irgarol의 노출 경과시간이 18 h에 도달하면, early gastrular stage로의 발달이 지연되기 시작하여, 24 h에서부터 유의미한 발달지연이 확인되었다. 이후 지속적인 발달지연이 관찰되어, Early gastrular-gastrular-early pluteus-pluteus로 이어지는 과정에서 발달지연이 나타났다. Diuron과 Irgarol은 잔류성이 높으며, 본 연구결과와 같이 무척추동물을 포함한 다양한 해양생물 군에 독성영향이 있는 것으로 알려져 있다. 이에, 해양 환경의 오염을 방지하고 보전하기 위하여, 관련된 규정의 마련을 통하여 환경보호 전략이 필요하다.

Keywords

Acknowledgement

본 논문은 2020년도 국립수산과학원 경상과제(R2020027) 연구비 지원으로 수행하였습니다.

References

  1. Agatsuma Y. 2001. Ecology of Hemicentrotus pulcherrimus, Pseudocentrotus depressus, and Anthocidaris crassispina. pp. 363-374. In: Edible Sea Urchins: Biology and Ecology. Elsevier Science. Netherlands.
  2. Amara I, W Miled, RB Slama and N Ladhari. 2018. Antifouling processes and toxicity effects of antifouling paints on marine. Environ. Toxicol. Pharmacol. 57:115-130. https://doi.org/10.1016/j.etap.2017.12.001
  3. Bao V, K Leung, JW Qiu and M Lam. 2011. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62:1147-1151. https://doi.org/10.1016/j.marpolbul.2011.02.041
  4. Chapman J, C Hellio, T Sullivan, R Brown, S Russell, ENL Kiterringhan and F Regan. 2014. Bioinspired synthetic macroalgae : examples from nature for antifouling applications. Int. Biodeter. Biodegr. 86:6-13. https://doi.org/10.1016/j.ibiod.2013.03.036
  5. Choi H, JW Lee, YH Park, SM Lee, YS Choi, S Heo and UK Hwang. 2020. Toxic effects of phenanthrene on fertilization and normal embryogenesis rates of Mesocentrotus nudus and Hemicentrotus pulcherrimus. Korean J. Environ. Biol. 38:333-342. https://doi.org/10.11626/KJEB.2020.38.3.333
  6. Cima F and L Ballarin. 2012. Immunotoxicity in ascidians: Antifouling compounds alternative to organotins III - The case of copper(I) and Irgarol 1051. Chemosphere 89:19-29. https://doi.org/10.1016/j.chemosphere.2012.04.007
  7. Cho GO. 2011. A study on the long-term variation of the distribution of organotin compounds and imposex in Thais clavigera on the coast of Korea. M.S. Thesis. Chonnam National University. Gwangju, Korea. pp. 47-56.
  8. Cresswell T, JP Richards, GA Glegg and JW Readman. 2006. The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar. Pollut. Bull. 52:1169-1175. https://doi.org/10.1016/j.marpolbul.2006.01.014
  9. Dafforn KA, JA Lewis and EL Johnston. 2011. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar. Pollut. Bull. 62:453-465. https://doi.org/10.1016/j.marpolbul.2011.01.012
  10. Dubey SK and U Roy. 2003. Biodegradation of tributyltins (organotins) by marine bacteria. Appl. Organomet. Chem. 17:3-8. https://doi.org/10.1002/aoc.394
  11. Han SK. 2012. Distribution of antifouling agent using Headspace Solid Phase Microextraction (HS-SPME) method in south-western coast of Korea. J. Korean Soc. Mar. Environ. Saf. 18:85-93. https://doi.org/10.7837/kosomes.2012.18.2.085
  12. Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metals (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.
  13. Hwang UK, DH Kim, HM Ryu, JW Lee, SY Park and SK Han. 2014. Effect of Bisphenol A on early embryonic development and the expression of Glutathione S-transferase (GST) in the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 32:234-242. https://doi.org/10.11626/KJEB.2014.32.3.234
  14. Hwang UK, JW Lee, HM Ryu, JC Kang and SK Han. 2015. Effect of phenol on embryo development and expression of metallothionein in the sea urchin Hemicentrotus pulcherrimus. Ocean Sci. J. 50:701-708. https://doi.org/10.1007/s12601-015-0063-8
  15. Hwang UK, JW Lee, YH Park, S Heo and H Choi. 2020. Toxic effects of antifouling agents (diuron and irgarol) on fertilization and normal embryogenesis rates in the sea urchin (Mesocentrotus nudus). Korean J. Environ. Biol. 38:207-215. https://doi.org/10.11626/KJEB.2020.38.2.207
  16. Jones RJ, J Muller, D Haynes and U Schreiber. 2003. Effects of herbicides diuron and atrazine on corals of the Great Barrier Reef, Australia. Mar. Ecol. Prog. Ser. 251:153-167. https://doi.org/10.3354/meps251153
  17. Jung JH, J Ko, EH Lee, KM Choi, M Kim, UH Yim, JS Lee and WJ Shim. 2017. RNA seq- and DEG-based comparison of developmental toxicity in fish embryos of two species exposed to Iranian heavy crude oil. Comp. Biochem. Physiol. C-Pharmacol. Toxicol. Endocrinol. 196:1-10. https://doi.org/10.1016/j.cbpc.2017.02.010
  18. Karlsson J, E Ytreberg and B Eklund. 2010. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. Environ. Pollut. 158:681-687. https://doi.org/10.1016/j.envpol.2009.10.024
  19. Kim GY and MO Park. 2001. Evaluation of butyltin compounds and its distribution among seawater, sediment and biota from the Kwangyang bay. J. Korean Fish. Soc. 34:291-298.
  20. Kim NS, WJ Shim, UH Yim, SH Hong, SY Ha, GM Han and KH Shin. 2014. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar. Pollut. Bull. 78:201-208. https://doi.org/10.1016/j.marpolbul.2013.10.043
  21. Kim NS, SH Hong, JG An, KH Shin and WJ Shim. 2015. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar. Pollut. Bull. 95:484-490. https://doi.org/10.1016/j.marpolbul.2015.03.010
  22. Kottuparambil S, MT brown, JH Park, SY Choi, HJ Lee, HG Choi, S Depuydt and TJ Han. 2017. Comparative assessment of single and joint effects of diuron and Irgarol 1051 on Arctic and temperate microalgae using chlorophyll a fluorescence imaging. Ecol. Indic. 76:304-316. https://doi.org/10.1016/j.ecolind.2017.01.024
  23. Lam KH, MHW Lam, PKS Lam, T Qian, Z Cai, H Yu and RYH Cheung. 2004. Identification and characterization of a new degradation product of Irgarol-1051 in mercuric chloride-catalyzed hydrolysis reaction and in coastal waters. Mar. Pollut. Bull. 49:356-367. https://doi.org/10.1016/j.marpolbul.2004.04.010
  24. Lambert SJ, KV Thomas and AJ Davy. 2006. Assessment of the risk posed by the antifouling booster biocides Irgarol 1051 and diuron to freshwater macrophytes. Chemosphere 63:734-743. https://doi.org/10.1016/j.chemosphere.2005.08.023
  25. Lee S, J Chung, H Won, D Lee and YW Lee. 2011. Analysis of antifouling agents after regulation of tributyltin compounds in Korea. J. Hazard. Mater. 185:1318-1325. https://doi.org/10.1016/j.jhazmat.2010.10.048
  26. Maccinis-Ng CMO and PJ Ralph. 2003. Short term response and recovery of Zostera capricorni photosynthesis after herbicide exposure. Aquat. Bot. 76:1-15. https://doi.org/10.1016/S0304-3770(03)00014-7
  27. Manzo S, S Buono and C Cremisini. 2006. Toxic effects of Irgarol and Diuron on sea urchin Paracentrotus lividus early development, fertilization, and offspring quality. Arch. Environ. Contam. Toxicol. 51:61-68. https://doi.org/10.1007/s00244-004-0167-0
  28. Michael CRA, KR Matthew and RB Matthew. 2013. Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA-Cancer J. Clin. 63:120-142. https://doi.org/10.3322/caac.21170
  29. Moncada A. 2004. Environmental Fate of Diuron. Environmental Monitoring Branch, Department of Pesticide Regulation, Sacramento, CA.
  30. Moon YS, MK Kim, CP Hong, JH Kang and JH Jung. 2019. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051®, Sea-Nine 211®) on non-target marine fish. Ecotox. Environ. Safe. 180:23-32. https://doi.org/10.1016/j.ecoenv.2019.04.070
  31. Okamura H, I Aoyama, D Liu, RJ Maguire, GJ Pacepavicius and YL Lau. 2000. Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res. 34:3523-3530. https://doi.org/10.1016/S0043-1354(00)00095-6
  32. Omae I. 2003. General aspects of tin-free antifouling paints. Chem. Rev. 103:3431-3448. https://doi.org/10.1021/cr030669z
  33. OSPAR. 2010. Assessment of the Impact of Shipping on the Marine Environment. Quality status report 2010. OSPAR Commission (Convention for the Protection of the Marine Environment of the North-East Atlantic), London.
  34. Price ARG and JW Readman. 2013. 12 Booster biocide antifoulants: is history repeating itself? In: Late Lessons from Early Warnings: Science, Precaution, Innovation. European Environment Agency, Copenhagen, Denmark.
  35. Sjollema SB, G MarinezGarcia, HG Geest, MHS Kraak, P Booji, AD Vethaak and W Admiraal. 2014. Hazard and risk of herbicides for marine macroalgae. Environ. Pollut. 187:106-111. https://doi.org/10.1016/j.envpol.2013.12.019
  36. Tanja ZS, Z Zuzana and P Alica. 2018. Oxidative stress in triazine pesticide toxicity: a review of the main biomarker findings. Arh. Hig. Rada. Toksikol. 69:109-125. https://doi.org/10.2478/aiht-2018-69-3118
  37. Voulvoulis N, MD Scrimshaw and JN Lester. 2000. Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar. Pollut. Bull. 40:938-946. https://doi.org/10.1016/S0025-326X(00)00034-5
  38. Yamada H. 2007. Behaviour, occurrence, and aquatic toxicity of new antifouling biocides and preliminary assessment of risk to aquatic ecosystems. Bull. Fish. Res. Agen. 21:31-45.
  39. Ytreberg E, J Karlsson and B Eklund. 2010. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater. Sci. Total Environ. 408:2459-2466. https://doi.org/10.1016/j.scitotenv.2010.02.036
  40. Zhang AQ, GJ Zhou, M H W Lam and KMY Leoung. 2019. Toxicities of Irgarol 1051 derivatives, M2 and M3, to two marine diatom species. Ecotox. Environ. Safe. 182:109455. https://doi.org/10.1016/j.ecoenv.2019.109455
  41. Zhang ZB, JY Hu, JH Zhen, XQ Wu and C Huang. 2008. Reproductive inhibition and transgenerational toxicity of triphenyltin on medaka (Oryzias latipes) at environmentally relevant tip levels. Environ. Sci. Technol. 42:8133-8139. https://doi.org/10.1021/es801573x