DOI QR코드

DOI QR Code

Application of Cytochrome b Gene Sequences for Identification of Parrots from Korean Zoos

  • Received : 2020.04.07
  • Accepted : 2020.07.07
  • Published : 2020.07.31

Abstract

Parrots are common targets for illegal trade because of their beauty and high price. Accurate identification is necessary for the prevention of illegal trade and conservation of parrots. In the present study, mitochondrial markers of cytochrome b (CYTB) gene were used to identify parrot species from Korean zoos. Totally, 27 samples were collected from Seoul Zoo, Cheongju Zoo, and Uchi Zoo. After collection, total DNA of samples was extracted and used for PCR amplification. CYTB fragments were sequenced from all samples examined. The obtained sequences were used for GenBank blast, distance estimation, and phylogenetic analysis. All species were identified using CYTB sequences that determined 27 samples belong to 13 species in 7 genera, and 3 families. Our finding demonstrated the usefulness of CYTB sequences for identifying parrot species in Korean zoos.

Keywords

References

  1. Aliabadian M, Kaboli M, Nijman V, Vences M, 2009. Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE, 4:e4119. https://doi.org/10.1371/journal.pone.0004119
  2. Arif IA, Khan HA, 2009. Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiversity and Conservation, 32:9-17.
  3. Astuti D, Azuma N, Suzuki H, Higashi S, 2006. Phylogenetic relationships within parrots (Psittacidae) inferred from mitochondrial cytochrome-b gene sequences. Zoological Science, 23:191-198. https://doi.org/10.2108/zsj.23.191
  4. Boonseub S, Tobe SS, Linacre AMT, 2009. The use of mitochondrial DNA genes to identify closely related avian species. Forensic Science International: Genetics Supplement Series, 2:275-277. https://doi.org/10.1016/j.fsigss.2009.08.050
  5. Branicki W, Kupiec T, Pawlowski R, 2003. Validation of cytochrome b sequence analysis as a method of species identification. Journal of Forensic Science, 48:83-87. https://doi.org/10.1520/JFS2002128
  6. Braun MP, 2014. Parrots (Aves: Psittaciformes): evolutionary history, phylogeography, and breeding biology. PhD dissertation, Heidelberg University, Heidelberg, Germany.
  7. Braun MP, Reinschmidt M, Datzmann T, Waugh D, Zamora R, Habich A, Neves L, Gerlach H, Arndt T, Mettke-Hofmann C, Wink M, 2016. Influences of oceanic islands and the Pleistocene on the biogeography and evolution of two groups of Australasian parrots (Aves: Psittaciformes: Eclectus roratus, Trichoglossus haematodus complex). Rapid evolution and implications for taxonomy and conservation. European Journal of Ecology, 3:47-66. https://doi.org/10.1515/eje-2017-0014
  8. Bush ER, Baker SE, Macdonald DW, 2014. Global trade in exotic pets 2006-2012. Conservation Biology, 28:663-676. https://doi.org/10.1111/cobi.12240
  9. Coghlan ML, White NE, Murray DC, Houston J, Rutherford W, Bellgard MI, Haile J, Bunce M, 2013. Metabarcoding avian diets at airports: implications for birdstrike hazard management planning. Investigative Genetics, 4:27. https://doi.org/10.1186/2041-2223-4-27
  10. Fritz U, Auer M, Bertolero A, Cheylan M, Fattizzo T, Hundsdorfer AK, Sampayo MM, Pretus JL, Siroky P, Wink M, 2006. A rangewide phylogeography of Hermann's tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zoologica Scripta, 35:531-543. https://doi.org/10.1111/j.1463-6409.2006.00242.x
  11. Frynta D, Liskova S, Bultmann S, Burda H, 2010. Being attractive brings advantages: the case of parrot species in captivity. PLoS ONE, 5:e12568. https://doi.org/10.1371/journal.pone.0012568
  12. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM, 2004. Identification of birds through DNA barcodes. PLoS Biology, 2:e312. https://doi.org/10.1371/journal.pbio.0020312
  13. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A, 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28:1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  14. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111-120. https://doi.org/10.1007/BF01731581
  15. Kornegay JR, Kocher TD, Williams LA, Wilson AC, 1993. Pathways of lysozyme evolution inferred from the sequences of cytochrome b in birds. Journal of Molecular Evolution, 37:367-379. https://doi.org/10.1007/BF00178867
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K, 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  17. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G, Maurin O, Duthoit S, Barraclough TG, Savolainen V, 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105:2923-2928. https://doi.org/10.1073/pnas.0709936105
  18. Lee JCI, Tsai LC, Huang MT, Jhuang JA, Yao CT, Chin SC, Wang LC, Linacre A, Hsieh HM, 2008. A novel strategy for avian species identification by cytochrome b gene. Electrophoresis, 29:2413-2418. https://doi.org/10.1002/elps.200700711
  19. Moore WS and DeFilippis VR, 1997. The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b. In: Avian molecular evolution and systematics (Ed., de Mindeel DP). Academic Press, New York, pp. 84-119.
  20. Presti FT, Guedes NMR, Antas PTZ, Miyaki CY, 2015. Population genetic structure in Hyacinth Macaws (Anodorhynchus hyacinthinus) and identification of the probable origin of confiscated individuals. Journal of Heredity, 106(S1):491-502. https://doi.org/10.1093/jhered/esv038
  21. Ribas CC, 2004. Filogenias Moleculares e Biogeografia Historica em Psitacideos (Aves: Psittacidae): Padroes e Processos de Diversificacao no Neotropico. Universidade de Sao Paulo, Instituto de Biociencias, Sao Paulo, pp. 1-151.
  22. Wink M, Sauer-Gurth H, 2000. Advances in the molecular systematics of African raptors. In: Raptors at risk (Eds., Chancellor RD, Meyburg BU). WWGBP/Handcock House, Surrey, pp. 135-147.
  23. Wirtz S, Bohm C, Fritz J, Kotrschal K, Veith M, Hochkirch A, 2018. Optimizing the genetic management of reintroduction projects: genetic population structure of the captive Northern Bald Ibis population. Conservation Genetics, 19:853-864. https://doi.org/10.1007/s10592-018-1059-6
  24. Witzenberger KA, Hochkirch A, 2011. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodiversity and Conservation, 20:1843-1861. https://doi.org/10.1007/s10531-011-0074-4