DOI QR코드

DOI QR Code

Tension Estimation for Hanger Cables on a Suspension Bridge Using Image Signals

영상신호를 이용한 현수교 행어케이블의 장력 추정

  • 김성완 (부산대학교 지진방재연구센터) ;
  • 윤다운 (부산대학교 지진방재연구센터) ;
  • 박시현 (한국시설안전공단 특수교관리센터) ;
  • 공민준 (한국시설안전공단 특수교관리센터) ;
  • 박재봉 (한국시설안전공단 특수교관리센터)
  • Received : 2020.04.29
  • Accepted : 2020.06.26
  • Published : 2020.06.30

Abstract

In suspension bridges, hanger cables are the main load-supporting members. The tension of the hanger cables of a suspension bridge is a very important parameter for assessing the integrity and safety of the bridge. In general, indirect methods are used to measure the tension of the hanger cables of a suspension bridge in traffic use. A representative indirect method is the vibration method, which extracts modal frequencies from the cables' responses and then measures the cable tension using the cables' geometric conditions and the modal frequencies. In this study, the image processing technique is applied to facilitate the estimation of the dynamic responses of the cables using the image signal, for which a portable digital camcorder was used due to its convenience and cost-efficiency. Ambient vibration tests were conducted on a suspension bridge in traffic use to verify the validity of the back analysis method, which can estimate the tension of remote hanger cables using the modal frequencies as a parameter. In addition, the tension estimated through back analysis method, which was conducted to minimize the difference between the modal frequencies calculated using finite element analysis of the hanger cables and the measured modal frequencies, was compared with that measured using the vibration method.

최근 재료 및 시공 기술의 지속적인 발전으로 인하여 장대교량의 건설이 증가하고 있다. 특히 케이블을 이용한 장대교량에서는 시공 중, 그리고 공용상태에서 케이블의 장력을 측정하여 교량의 안전성을 지속적으로 감시하는 것이 중요하다. 케이블 장력을 측정하기 위한 다양한 방법이 있으며, 그중에서도 케이블의 형상조건과 고유진동수를 이용하여 장력을 산정하는 진동법은 로드셀 등을 이용하여 케이블의 응력을 측정하는 직접법에 비해 경제적이며 편리하므로 현재 널리 활용되고 있다. 본 연구에서는 영상신호를 이용하여 케이블의 응답을 측정하기 위해 영상처리기법을 적용하였으며 사용의 편의성과 경제성을 고려하여 상업용 디지털 캠코더를 사용하였다. 모드별 고유진동수들을 변수로 하여 원거리에 위치한 행어케이블의 장력을 추정할 수 있는 역해석 방법의 타당성을 검증하기 위하여 공용중인 현수교에서 상시진동실험을 수행하였다. 그리고 각 행어케이블의 해석모델을 통해서 계산된 모드별 고유진동수와 계측된 모드별 고유진동수의 차이를 이용하여 역해석하여 추정된 장력을 진동법에 의해 산정된 장력과 비교하였다.

Keywords

References

  1. Bruck, H. A., McNeill, S. R., Sutton, M. A. and Peters, W. H. (1989), Digital image correlation using Newton-Raphson method of partial differential correction, Experimental Mechanics, 29(3), 261-267. https://doi.org/10.1007/BF02321405
  2. Cho, S., Yim, J., Shin, S. W., Jung, H. J., Yun, C. B. and Wang, M. L. (2013), Comparative field study of cable tension measurement for a cable-stayed bridge, Journal of Bridge Engineering, 18(8), 748-757. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000421
  3. Chu, C. K., Chang, C. W., Huang, M. J., Zhang, Q. W. and Lin, C. H. (2013), Tension measurements for XINBEI cable-stayed bridge with ambient vibrations and an EM tension sensor, Disaster Advances, 6(9), 63-68.
  4. Haji Agha Mohammad Zarbaf, S. E., Norouzi, M., Allemang, R., Hunt, V., Helmicki, A. and Venkatesh, C. (2018), Vibration-based cable condition assessment: a novel application of neural networks, Engineering Structures, 177, 291-305. https://doi.org/10.1016/j.engstruct.2018.09.060
  5. Kim, B. H., Moon, S. Y., Bae, I. H. and Park, T. H. (2007), Estimating tensile force of hangers in suspension bridges using frequency based SI technique: II. Field applications, The Korean Society of Civil Engineers, 28(2A), 173-179.
  6. Kim, C. H., Jo, B. W. and Jun, J. T. (2012), Application of laser vibrometer to the measurement and control of cable tensile forces in cable-stayed bridges, International Journal of Distributed Sensor Networks, 10, 810682.
  7. Kim, M. K. and Jang, J. B. (1995), Back Analysis of the Measured Displacements by the Coupled Method of Finite Elements -Boundary Elements in Tunnel, Journal of Korean Society for Rock Mechanics, 5(3), 205-213.
  8. Kim, N. S., Park, D. U., Park, Y. M. and Cheung, J. H. (2007), Back analysis technique for the estimation of tension force on hanger cables, Journal of the Earthquake Engineering Society of Korea, 11(3), 1-10.
  9. Kim, K. J., Park, Y. S. and Park, S. W. (2020), Development of artificial neural network model for estimation of cable tension of cable-stayed bridge, Journal of the Korea Academia-Industrial Cooperation Society, 21(3), 414-419. https://doi.org/10.5762/KAIS.2020.21.3.414
  10. Kim, K. S. (2012), Principle of digital image correlation, Journal of the Korean Society for Nondestructive Testing, 32(5), 597-602.
  11. Kim, S. W., Jeon, B. G., Cheung, J. H., Kim, S. D. and Park, J. B. (2017), Stay cable tension estimation using a vision-based monitoring system under various weather conditions, Journal of Civil Structural Health Monitoring, 7(3), 343-357. https://doi.org/10.1007/s13349-017-0226-7
  12. Kim, S. W., Jeon, B. G., Kim, N. S. and Park, J. C. (2013), Vision-based monitoring system for evaluating cable tensile forces on a cable-stayed bridge, Structural Health Monitoring, 12(5-6), 509-517.
  13. Kim, S. W. and Kim, N. S. (2013), Dynamic characteristics of suspension bridge hanger cables using digital image processing, NDT & E International, 59, 509-517.
  14. Lee, H. J. (2018), A study in the efficient tension estimation of cables under ambient vibration using minimized measurement and signal processing system, Journal of the Korea Academia-Industrial Cooperation Society, 19(11), 594-603. https://doi.org/10.5762/KAIS.2018.19.11.594
  15. Pan, B., Qian, K., Xie, H. and Asundi, A. (2009), Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Measurement Science and Technology, 20(6), 1-17.
  16. Park, D. Y., Kim, S. H. and Kim, D. Y. (2011), Monitoring of cable force on cable-stayed bridge of multi-Strand type using FBG Sensors, The Computational Structural Engineering Institute of Korea, 24(2), 72-78.
  17. Park, T. H., Moon, S. Y., Joo, H. J. and Kim, B. H. (2007), Estimating tensile force of hangers in suspension bridges using frequency based SI technique: I. theory, The Korean Society of Civil Engineers, 28(2A), 165-172.
  18. Shimada, T. (1994), Estimating method of cable tension from natural frequency of high mode, Proceeding of Japan Society of Civil Engineers, 501(1-29), 163-171.
  19. Sim, S. H., Li, J., Jo, H., Park, J. W., Cho, S., Spencer, B. F. and Jung, H. J. (2014), A wireless smart sensor network for automated monitoring of cable tension, Smart Materials and Structures, 23(2), 025006. https://doi.org/10.1088/0964-1726/23/2/025006
  20. Yang, K. T. (2004), Indirect estimation of cable tension using dynamic characteristics, Journal of Korean Society of Mechanical Technology, 6(2), 15-23.