DOI QR코드

DOI QR Code

액체 추진제 공급시스템의 정특성 모델링 및 검증

Modeling and Validation of a Liquid Propellant Supply System in Steady States

  • Lee, Juyeon (Department of Aerospace Engineering, Inha University) ;
  • Ki, Wonkeun (Department of Aerospace Engineering, Graduate School of Chungnam National University) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University) ;
  • Roh, Tae-seong (Department of Aerospace Engineering, Inha University) ;
  • Lee, Hyoung Jin (Department of Aerospace Engineering, Inha University)
  • 투고 : 2020.09.22
  • 심사 : 2020.10.28
  • 발행 : 2020.12.31

초록

액체로켓엔진의 추진제 공급시스템의 각 요소와 전체 시스템에 대한 보편적 모델에 실험계수를 적용한 수학적 모델링 기법을 소형 액체로켓엔진을 모사한 수류 시험 장치를 통한 실험 결과로부터 검증하였다. 유체저항요소와 펌프의 압력 변화에 대한 예측을 수행하였으며 예측 정확도 향상을 위해 구성요소 모델링에 대하여 실험계수를 적용하였다. 이를 위해 각 구성요소에 대해 유동의 지배방정식이나 이미 알려진 경험식을 기반으로 실험계수의 도출 방안에 대하여 정리하였으며 사용한 상용품의 실험계수를 제시하였다. 모델링을 통한 예측 결과는 실험 데이터와 비교적 잘 일치하였다. 실험데이터와의 검증을 통해 시뮬레이션의 정확도에 영향을 미치는 인자에 대해 분석하고 시스템 해석의 정확도 향상 방안에 대하여 제안하였다.

The mathematical modeling applying experimental coefficients to a conventional model was validated through the hydraulic test for the components and the full system of a small-sized liquid rocket engine's propellant supply system. According to the simulations, pressures difference for the fluid resistance components and the pump were mainly predicted. In order to improve the modeling accuracy, the loss coefficients obtained by the empirical method were applied to the modeling. Based on the governing equation of the flow or the well known empirical equation, the method of deriving the empirical coefficients was summarized and the coefficients were presented for the commercial products used in this study. The prediction results by modeling were in good agreement with the experimental data. Through the comparison with the experimental data, the factors affecting the accuracy of the simulation were analyzed and improving methods of the accuracy was proposed.

키워드

과제정보

본 연구는 방위사업청과 국방과학연구소의 지원으로 수행되었으며 이에 감사드립니다. (계약번호 UD180046GD).

참고문헌

  1. Juyeon, L., Seung-Won, C., Donghui, H., Wonkeun, K., Jaecheong, L., Hwanil, H., Tae-Seong, R. and Hyoung Jin, L., "Research trend analysis on modeling and simulation of liquid propellant supply system," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 6, pp. 39-50, 2019. https://doi.org/10.6108/KSPE.2019.23.6.039
  2. Binder, M., "An RL10A-3-3A rocket engine model using the Rocket Engine Transient Simulator(ROCETS) software," 29th Joint Propulsion Conference and Exhibit, Monterey, CA, p. 2357, Jun. 1993.
  3. Kimura, T., Takahashi, M., Wakamatsu, Y., Hasegawa, K., Yamanishi, N. and Osada, A., "Rocket Engine Dynamic Simulator (REDS)," JAXA-1349-1113, 2004.
  4. Moral, J., Perez Vara, R., Steelant, J. and De Rosa, M., "ESPSS simulation platform," Space Propulsion, May 2010.
  5. Wonkeun, K., Jaecheong, L., Hyoungjin, L., Tae-Seong, R. and Hwanil, H., "Overseas research trends of an electric-pump cycle for application in upper-stage propulsion systems," Journal of the Korean Society of Propulsion Engineers, Vol. 24, No. 1, pp. 64-77, 2020. https://doi.org/10.6108/KSPE.2020.24.1.064
  6. Spiller, D., Stabile, A. and Lentini, D., "Design and testing of a demonstrator electric-pump feed system for liquid propellant rocket engines," Aerotecnica Missili & Spazio, Vol. 92, No. 3-4, pp. 123-130, 2013. https://doi.org/10.1007/BF03404670
  7. Talik, J., Luce, J., Froelich, J.C., Shang, M., Rasheed, R.M. and Roland, J.S., "Electric propellant feed-system for amateur class high altitude sounding rockets," AIAA SPACE and Astronautics Forum and Exposition, Orlando, F.L., U.S.A., AIAA 2017-5132, Sep. 2017.
  8. Taeho, K., Yushin, J. and Woongsup, Yoon., "Modeling of the liquid rocket engine transients," Journal of the Korean Society of Propulsion Engineers, Vol. 15, No. 1, pp. 45-54, 2011.
  9. Moody, F., "Friction factors for pipe flow," Transactions of the A.S.M.E., Vol. 66, pp. 671-684, 1944.
  10. Juyeon, L., Tae-Seong, R., Hwanil, H. and Hyoung Jin, L., "Performance analysis and mass estimation of a small-sized liquid rocket engine with electric-pump cycle," International Journal of Aeronautical and Space Sciences, Accepted.
  11. Taekyu, L., Sangbok, L. and Tae-Seong, R., "Pipe network analysis for liquid rocket engine with gas-generator cycle," 2012 KSPE Spring Conference, Korea, pp. 52-57, May 2012.
  12. Lozano-Tovar, P.C., "Dynamic models for liquid rocket engine with health monitoring application," M.S. Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, 1998.
  13. Lobanoff, S. and Robert, R., "Centrifugal pumps: design and application," Elsevier, 2013.
  14. Wonkeun, K., Jaecheong, L. and Hwanil, H., "Fundamental experimental setup of an electric-pump cycle for space propulsion systems," 53rd KSPE Fall Conference, Busan, Korea, pp. 59-60, Nov. 2019.