DOI QR코드

DOI QR Code

Radiolabeled single-domain antibody for tumor receptor imaging

  • Moon, Yeajin (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University) ;
  • Lee, Ju Young (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University) ;
  • Ryoo, Woonseok (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University) ;
  • Seo, Seung-Yong (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
  • 투고 : 2020.06.15
  • 심사 : 2020.06.26
  • 발행 : 2020.06.30

초록

Recently, single-domain antibodies (sdAb) are bioengineered for molecular imaging applications. Single-domain antibody, obtained from naturally occurring antibodies in camelid species and cartilaginous fish is the smallest fully functional antigen-binding antibody fragments of heavy-chain. Since their discovery, they have been investigated extensively in clinical therapeutics, monitoring and diagnostics. Their small size is important advantage for high solubility, high stability, fast blood clearance and rapid targeting. This review article summarizes the recent status of this new antibody to visualize, diagnose or inhibit specific targets of cancer.

키워드

참고문헌

  1. Herschman HRJS. Molecular imaging: looking at problems, seeing solutions. 2003;302(5645):605-8. https://doi.org/10.1126/science.1090585
  2. Menon JU, Gulaka PK, McKay MA, Geethanath S, Liu L, Kodibagkar VD. Dual-modality, dual-functional nanoprobes for cellular and molecular imaging. Theranostics. 2012;2(12):1199-207. https://doi.org/10.7150/thno.4812
  3. Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010;40(3):167-81. https://doi.org/10.1053/j.semnuclmed.2009.12.005
  4. Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2(1):77-83. https://doi.org/10.4161/mabs.2.1.10786
  5. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446-8. https://doi.org/10.1038/363446a0
  6. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol. 2009;128(1-3):178-83. https://doi.org/10.1016/j.vetimm.2008.10.299
  7. De Meyer T, Muyldermans S, Depicker A. Nanobodybased products as research and diagnostic tools. Trends Biotechnol. 2014;32(5):263-70. https://doi.org/10.1016/j.tibtech.2014.03.001
  8. Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Theranostics. 2014;4(4):386-98. https://doi.org/10.7150/thno.8006
  9. D'Huyvetter M, Vincke C, Xavier C, Aerts A, Impens N, Baatout S, et al. Targeted radionuclide therapy with A 177Lu-labeled anti-HER2 nanobody. Theranostics. 2014;4(7):708-20. https://doi.org/10.7150/thno.8156
  10. Sharkey RM, Goldenberg DM. Cancer radioimmunotherapy. Immunotherapy. 2011;3(3):349-70. https://doi.org/10.2217/imt.10.114
  11. Lemaire M, D'Huyvetter M, Lahoutte T, Van Valckenborgh E, Menu E, De Bruyne E, et al. Imaging and radioimmunotherapy of multiple myeloma with antiidiotypic Nanobodies. Leukemia. 2014;28(2):444-7. https://doi.org/10.1038/leu.2013.292
  12. Pruszynski M, Koumarianou E, Vaidyanathan G, Revets H, Devoogdt N, Lahoutte T, et al. Targeting breast carcinoma with radioiodinated anti-HER2 Nanobody. Nucl Med Biol. 2013;40(1):52-9. https://doi.org/10.1016/j.nucmedbio.2012.08.008
  13. Stathopoulou A, Vlachonikolis I, Mavroudis D, Perraki M, Kouroussis C, Apostolaki S, et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol. 2002;20(16):3404-12. https://doi.org/10.1200/JCO.2002.08.135
  14. Van Audenhove I, Gettemans J. Nanobodies as Versatile Tools to Understand, Diagnose, Visualize and Treat Cancer. EBioMedicine. 2016;8:40-8. https://doi.org/10.1016/j.ebiom.2016.04.028
  15. Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J. 2011;25(7):2433-46. https://doi.org/10.1096/fj.10-180331
  16. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165-77. https://doi.org/10.1158/0008-5472.CAN-11-2994
  17. Put S, Schoonooghe S, Devoogdt N, Schurgers E, Avau A, Mitera T, et al. SPECT imaging of joint inflammation with Nanobodies targeting the macrophage mannose receptor in a mouse model for rheumatoid arthritis. J Nucl Med. 2013;54(5):807-14. https://doi.org/10.2967/jnumed.112.111781
  18. Broisat A, Hernot S, Toczek J, De Vos J, Riou LM, Martin S, et al. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110(7):927-37. https://doi.org/10.1161/CIRCRESAHA.112.265140
  19. Huang L, Gainkam LO, Caveliers V, Vanhove C, Keyaerts M, De Baetselier P, et al. SPECT imaging with $^{99m}Tc$labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Mol Imaging Biol. 2008;10(3):167-75. https://doi.org/10.1007/s11307-008-0133-8
  20. Vosjan MJ, Perk LR, Roovers RC, Visser GW, Stigter-van Walsum M, van Bergen En Henegouwen PM, et al. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET. Eur J Nucl Med Mol Imaging. 2011;38(4):753-63. https://doi.org/10.1007/s00259-010-1700-1
  21. Oliveira S, van Dongen GA, Stigter-van Walsum M, Roovers RC, Stam JC, Mali W, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Mol Imaging. 2012;11(1):33-46.
  22. Chatalic KL, Veldhoven-Zweistra J, Bolkestein M, Hoeben S, Koning GA, Boerman OC, et al. A Novel (1)(1)(1)In-Labeled Anti-Prostate-Specific Membrane Antigen Nanobody for Targeted SPECT/CT Imaging of Prostate Cancer. J Nucl Med. 2015;56(7):1094-9. https://doi.org/10.2967/jnumed.115.156729
  23. Evazalipour M, D'Huyvetter M, Tehrani BS, Abolhassani M, Omidfar K, Abdoli S, et al. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media Mol Imaging. 2014;9(3):211-20. https://doi.org/10.1002/cmmi.1558
  24. Xavier C VI, D'Huyvetter M, et al. Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med. 2013;54:776-84. https://doi.org/10.2967/jnumed.112.111021
  25. Keyaerts M XC, Heemskerk J, et al. Phase I study of 68Ga-HER2- Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57:27-33. https://doi.org/10.2967/jnumed.115.162024
  26. Bala G, Crauwels M, Blykers A, Remory I, Marschall ALJ, Dubel S, et al. Radiometal-labeled anti-VCAM-1 nanobodies as molecular tracers for atherosclerosis - impact of radiochemistry on pharmacokinetics. Biol Chem. 2019;400(3):323-32. https://doi.org/10.1515/hsz-2018-0330
  27. Xavier C BA, Vaneycken I, D'Huyvetter M, Heemskerk J, Lahoutte T, Devoogdt N, Caveliers V. (18)F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol. 2016;43:247-52. https://doi.org/10.1016/j.nucmedbio.2016.01.002
  28. D'Huyvetter M DVJ, Xavier C, et al. 131I-labeled anti-HER2 camelid sdAb as a theranostic tool in cancer treatment. Clin Cancer Res. 2017;23:6616-28. https://doi.org/10.1158/1078-0432.CCR-17-0310
  29. Vaidyanathan G MD, Choi J, et al. Preclinical evaluation of 18F-labeled anti-HER2 Nanobody conjugates for imaging HER2 receptor expression by immuno-PET. J Nucl Med. 2016;57:967-73. https://doi.org/10.2967/jnumed.115.171306
  30. Pruszynski M KE, Vaidyanathan G, et al. Improved tumor targeting of anti-HER2 Nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med. 2014;55:650-6. https://doi.org/10.2967/jnumed.113.127100
  31. A. Broisat ea. Nanobodies targeting mouse/human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circ Res. 2012;110:927-37. https://doi.org/10.1161/CIRCRESAHA.112.265140
  32. Movahedi K SS, Laoui D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72:4165-77. https://doi.org/10.1158/0008-5472.CAN-11-2994
  33. Blykers A SS, Xavier C, et al. PET imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled Camelid single-domain antibody fragments. J Nuclear Medicine. 2015;56:1265-71. https://doi.org/10.2967/jnumed.115.156828
  34. Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775-97. https://doi.org/10.1146/annurev-biochem-063011-092449
  35. Helma J, Cardoso MC, Muyldermans S, Leonhardt H. Nanobodies and recombinant binders in cell biology. J Cell Biol. 2015;209(5):633-44. https://doi.org/10.1083/jcb.201409074
  36. Nguyen VK, Zou X, Lauwereys M, Brys L, Bruggemann M, Muyldermans S. Heavy-chain only antibodies derived from dromedary are secreted and displayed by mouse B cells. Immunology. 2003;109(1):93-101. https://doi.org/10.1046/j.1365-2567.2003.01633.x
  37. Zou X, Smith JA, Nguyen VK, Ren L, Luyten K, Muyldermans S, et al. Expression of a dromedary heavy chain-only antibody and B cell development in the mouse. J Immunol. 2005;175(6):3769-79. https://doi.org/10.4049/jimmunol.175.6.3769
  38. Janssens R, Dekker S, Hendriks RW, Panayotou G, van Remoortere A, San JK, et al. Generation of heavychain-only antibodies in mice. Proc Natl Acad Sci U S A. 2006;103(41):15130-5. https://doi.org/10.1073/pnas.0601108103