References
- Johnson DB, Hallberg KB. 2005. Acid mine drainage remediation options: a review. Sci. Total Environ. 338: 3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
- Luptakova A, Kusnierova M. 2005. Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77: 97-102. https://doi.org/10.1016/j.hydromet.2004.10.019
- Diez-Ercilla M, Sanchez-Espana J, Yusta I, Wendt-Potthoff K, Koschorreck M. 2014. Formation of biogenic sulphides in the water column of an acidic pit lake: biogeochemical controls and effects on trace metal dynamics. Biogeochemistry 121: 519-536. https://doi.org/10.1007/s10533-014-0020-0
- Johnson DB, Hallberg KB. 2005. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci. Total. Environ. 338: 81-93. https://doi.org/10.1016/j.scitotenv.2004.09.008
- Rabus R, Hansen TA, Widdel F. 2013. Dissimilatory sulfate-and sulfur-reducing prokaryotes, pp. 309-404. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes, Springer, Berlin, Heidelberg.
- Jong T, Parry DL. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571. https://doi.org/10.1016/j.watres.2006.05.001
- Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B. 2010. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments: New taxa: Firmicutes (Class Clostridia, Order Clostridiales, Family Peptococcaceae). Extremophiles 14: 305-312. https://doi.org/10.1007/s00792-010-0309-4
- Lee YJ, Romanek CS, Wiegel J. 2009. Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int. J. Syst. Evol. Microbiol. 59: 2743-2746. https://doi.org/10.1099/ijs.0.007336-0
- Kimura S, Hallberg KB, Johnson DB. 2006. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 57-65.
- Karnachuk OV, Mardanov AV, Avakyan MR, Kadnikov VV, Vlasova M, Beletsky AV, et al. 2015. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment. FEMS Microbiol. Lett. 362. doi: 10.1093/femsle/fnv007.
- Widdel F, Bak F. 1992. Gram-negative mesophilic sulfate-reducing bacteria, pp. 3352-3378. In Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds.), The Prokaryotes, Springer, New York, NY.
- Kim GM, Kim DH, Kang JS, Baek H. 2014. Treatment of synthetic acid mine drainage using rice wine waste as a carbon source. Environ. Earth Sci. 71: 4603-4609. https://doi.org/10.1007/s12665-013-2852-7
- Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3: 208-218. https://doi.org/10.1016/S0022-2836(61)80047-8
- Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. https://doi.org/10.1093/nar/17.19.7843
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, et al. 2006. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66: 194-205. https://doi.org/10.1016/j.mimet.2005.11.002
- Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975-2982. https://doi.org/10.1128/JB.180.11.2975-2982.1998
- Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. https://doi.org/10.1128/AEM.59.3.695-700.1993
- DIN German Institute for Standardization. 1983. German standard methods for the examination of water, waste water and sludge. Cations (group E) - determination of iron (E 1).
- US Environmental Protection Agency (US EPA). 2007. Method 7000B, Flame Atomic Absorption Spectrophotometry.
- Ayangbenro AS, Olanrewaju OS, Babalola OO. 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front. Microbiol. 9: 1986. https://doi.org/10.3389/fmicb.2018.01986
- Doshi SM. 2006. Bioremediation of acid mine drainage using sulfate-reducing bacteria. US Environmental Protection Agency, Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation. 65.
- Sanchez-Andrea I, Stams AJ, Hedrich S, Nancucheo I, Johnson DB. 2015. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles 19: 39-47. https://doi.org/10.1007/s00792-014-0701-6
- Senko JM, Zhang G, McDonough JT, Bruns MA, Burgos WD. 2009. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol. J. 26: 71-82. https://doi.org/10.1080/01490450802660193
- Sani RK, Peyton BM, Brown LT. 2001. Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl. Environ. Microbiol. 67: 4765-4772. https://doi.org/10.1128/AEM.67.10.4765-4772.2001
- Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R. 2001. Acute toxicity of heavy metals to acetate‐utilizing mixed cultures of sulfate‐reducing bacteria: EC100 and EC50. Environ. Toxicol. Chem. 20: 2662-2669. https://doi.org/10.1002/etc.5620201202
- Cabrera G, Perez R, Gomez JM, Abalos A, Cantero D. 2006. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazard. Mater. 135: 40-46. https://doi.org/10.1016/j.jhazmat.2005.11.058