DOI QR코드

DOI QR Code

Sulfate Reduction for Bioremediation of AMD Facilitated by an Indigenous Acid- and Metal-Tolerant Sulfate-Reducer

  • Nguyen, Hai Thi (VNU Institute of Microbiology and Biotechnology (IMBT), Vietnam National University Hanoi) ;
  • Nguyen, Huong Lan (Hanoi University of Science and Technology (HUST)) ;
  • Nguyen, Minh Hong (VNU Institute of Microbiology and Biotechnology (IMBT), Vietnam National University Hanoi) ;
  • Nguyen, Thao Kim Nu (VNU Institute of Microbiology and Biotechnology (IMBT), Vietnam National University Hanoi) ;
  • Dinh, Hang Thuy (VNU Institute of Microbiology and Biotechnology (IMBT), Vietnam National University Hanoi)
  • Received : 2020.01.10
  • Accepted : 2020.03.03
  • Published : 2020.07.28

Abstract

Acid mine drainage (AMD) has been a serious environmental issue that threatens soil and aquatic ecosystems. In this study, an acid-tolerant sulfate-reducing bacterium, strain S4, was isolated from the mud of an AMD storage pond in Vietnam via enrichment in anoxic mineral medium at pH 5. Comparative analyses of sequences of the 16S rRNA gene and dsrB gene involved in sulfate reduction revealed that the isolate belonged to the genus Desulfovibrio, and is most closely related to Desulfovibrio oxamicus (with 99% homology in 16S rDNA sequence and 98% homology in dsrB gene sequence). Denaturing gradient gel electrophoresis (DGGE) analyses of dsrB gene showed that strain S4 represented one of the two most abundant groups developed in the enrichment culture. Notably, strain S4 was capable of reducing sulfate in low pH environments (from 2 and above), and resistance to extremely high concentration of heavy metals (Fe 3,000 mg/l, Zn 100 mg/l, Cu 100 mg/l). In a batch incubation experiment in synthetic AMD with pH 3.5, strain S4 showed strong effects in facilitating growth of a neutrophilic, metal sensitive Desulfovibrio sp. strain SR4H, which was not capable of growing alone in such an environment. Thus, it is postulated that under extreme conditions such as an AMD environment, acid- and metal-tolerant sulfate-reducing bacteria (SRB)-like strain S4 would facilitate the growth of other widely distributed SRB by starting to reduce sulfate at low pH, thus increasing pH and lowering the metal concentration in the environment. Owing to such unique physiological characteristics, strain S4 shows great potential for application in sustainable remediation of AMD.

Keywords

References

  1. Johnson DB, Hallberg KB. 2005. Acid mine drainage remediation options: a review. Sci. Total Environ. 338: 3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
  2. Luptakova A, Kusnierova M. 2005. Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77: 97-102. https://doi.org/10.1016/j.hydromet.2004.10.019
  3. Diez-Ercilla M, Sanchez-Espana J, Yusta I, Wendt-Potthoff K, Koschorreck M. 2014. Formation of biogenic sulphides in the water column of an acidic pit lake: biogeochemical controls and effects on trace metal dynamics. Biogeochemistry 121: 519-536. https://doi.org/10.1007/s10533-014-0020-0
  4. Johnson DB, Hallberg KB. 2005. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci. Total. Environ. 338: 81-93. https://doi.org/10.1016/j.scitotenv.2004.09.008
  5. Rabus R, Hansen TA, Widdel F. 2013. Dissimilatory sulfate-and sulfur-reducing prokaryotes, pp. 309-404. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes, Springer, Berlin, Heidelberg.
  6. Jong T, Parry DL. 2006. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Res. 40: 2561-2571. https://doi.org/10.1016/j.watres.2006.05.001
  7. Alazard D, Joseph M, Battaglia-Brunet F, Cayol JL, Ollivier B. 2010. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments: New taxa: Firmicutes (Class Clostridia, Order Clostridiales, Family Peptococcaceae). Extremophiles 14: 305-312. https://doi.org/10.1007/s00792-010-0309-4
  8. Lee YJ, Romanek CS, Wiegel J. 2009. Desulfosporosinus youngiae sp. nov., a spore-forming, sulfate-reducing bacterium isolated from a constructed wetland treating acid mine drainage. Int. J. Syst. Evol. Microbiol. 59: 2743-2746. https://doi.org/10.1099/ijs.0.007336-0
  9. Kimura S, Hallberg KB, Johnson DB. 2006. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17: 57-65.
  10. Karnachuk OV, Mardanov AV, Avakyan MR, Kadnikov VV, Vlasova M, Beletsky AV, et al. 2015. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment. FEMS Microbiol. Lett. 362. doi: 10.1093/femsle/fnv007.
  11. Widdel F, Bak F. 1992. Gram-negative mesophilic sulfate-reducing bacteria, pp. 3352-3378. In Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds.), The Prokaryotes, Springer, New York, NY.
  12. Kim GM, Kim DH, Kang JS, Baek H. 2014. Treatment of synthetic acid mine drainage using rice wine waste as a carbon source. Environ. Earth Sci. 71: 4603-4609. https://doi.org/10.1007/s12665-013-2852-7
  13. Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3: 208-218. https://doi.org/10.1016/S0022-2836(61)80047-8
  14. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17: 7843-7853. https://doi.org/10.1093/nar/17.19.7843
  15. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  16. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  17. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, et al. 2006. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66: 194-205. https://doi.org/10.1016/j.mimet.2005.11.002
  18. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. 1998. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975-2982. https://doi.org/10.1128/JB.180.11.2975-2982.1998
  19. Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. https://doi.org/10.1128/AEM.59.3.695-700.1993
  20. DIN German Institute for Standardization. 1983. German standard methods for the examination of water, waste water and sludge. Cations (group E) - determination of iron (E 1).
  21. US Environmental Protection Agency (US EPA). 2007. Method 7000B, Flame Atomic Absorption Spectrophotometry.
  22. Ayangbenro AS, Olanrewaju OS, Babalola OO. 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front. Microbiol. 9: 1986. https://doi.org/10.3389/fmicb.2018.01986
  23. Doshi SM. 2006. Bioremediation of acid mine drainage using sulfate-reducing bacteria. US Environmental Protection Agency, Office of Solid Waste and Emergency Response and Office of Superfund Remediation and Technology Innovation. 65.
  24. Sanchez-Andrea I, Stams AJ, Hedrich S, Nancucheo I, Johnson DB. 2015. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles 19: 39-47. https://doi.org/10.1007/s00792-014-0701-6
  25. Senko JM, Zhang G, McDonough JT, Bruns MA, Burgos WD. 2009. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiol. J. 26: 71-82. https://doi.org/10.1080/01490450802660193
  26. Sani RK, Peyton BM, Brown LT. 2001. Copper-induced inhibition of growth of Desulfovibrio desulfuricans G20: assessment of its toxicity and correlation with those of zinc and lead. Appl. Environ. Microbiol. 67: 4765-4772. https://doi.org/10.1128/AEM.67.10.4765-4772.2001
  27. Utgikar VP, Chen BY, Chaudhary N, Tabak HH, Haines JR, Govind R. 2001. Acute toxicity of heavy metals to acetate‐utilizing mixed cultures of sulfate‐reducing bacteria: EC100 and EC50. Environ. Toxicol. Chem. 20: 2662-2669. https://doi.org/10.1002/etc.5620201202
  28. Cabrera G, Perez R, Gomez JM, Abalos A, Cantero D. 2006. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J. Hazard. Mater. 135: 40-46. https://doi.org/10.1016/j.jhazmat.2005.11.058