References
- Ke C, Zhao C, Rensing C, Yang S, Zhang Y. 2018. Characterization of recombinant E. coli expressing arsR from Rhodopseudomonas palustris CGA009 that displays highly selective arsenic adsorption. Appl. Microbiol. Biotechnol. 102: 6247-6255. https://doi.org/10.1007/s00253-018-9080-8
- Li H, Cong Y, Lin J, Chang Y. 2015. Enhanced tolerance and accumulation of heavy metal ions by engineered Escherichia coli expressing Pyrus calleryana phytochelatin synthase. J. Basic Microbiol. 55: 398-405. https://doi.org/10.1002/jobm.201300670
- Wang W, Jiang F, Wu F, Li J, Ge R, Tan G, et al. 2019. Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell. Appl. Microbiol. Biotechnol. 103: 6797-6807. https://doi.org/10.1007/s00253-019-09984-9
- Yin K, Lv M, Wang Q, Wu Y, Liao C, Zhang W, et al. 2016. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Res. 103: 383-390. https://doi.org/10.1016/j.watres.2016.07.053
- Ramirez-Diaz MI, Diaz-Perez C, Vargas E, Riveros-Rosas H, Campos-Garcia J, Cervantes C. 2008. Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321-332. https://doi.org/10.1007/s10534-007-9121-8
- Branco R, Alpoim MC, Morais PV. 2004. Ochrobactrum tritici strain 5bvl1 - characterization of a Cr(VI)-resistant and Cr(VI)-reducing strain. Can. J. Microbiol. 50: 697-703. https://doi.org/10.1139/w04-048
- Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A. 2008. The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. J. Bacteriol. 190: 6996-7003. https://doi.org/10.1128/JB.00289-08
- Branco R, Morais PV. 2016. Two superoxide dismutases from TnOtchr are involved in detoxification of reactive oxygen species induced by chromate. BMC Microbiol. 16: 27. https://doi.org/10.1186/s12866-016-0648-0
- Branco R, Morais PV. 2013. Identification and characterization of the transcriptional regulator ChrB in the chromate resistance determinant of Ochrobactrum tritici 5bvl1. PLoS One 8: e77987. https://doi.org/10.1371/journal.pone.0077987
- Bregnbak D, Johansen JD, Jellesen MS, Zachariae C, Thyssen JP. 2015. Chromium(VI) release from leather and metals can be detected with a diphenylcarbazide spot test. Contact Dermatitis 73: 281-288. https://doi.org/10.1111/cod.12406
- Aniyikaiye TE, Oluseyi T, Odiyo JO, Edokpayi JN. 2019. Physico-chemical analysis of wastewater discharge from selected paint industries in lagos, Nigeria. Int. J. Environ. Res. Public Health 16: 1235. https://doi.org/10.3390/ijerph16071235
- Rapisarda VA, Montelongo LR, Farias RN, Massa EM. 1999. Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Arch. Biochem. Biophys. 370: 143-150. https://doi.org/10.1006/abbi.1999.1398
- Lu J, Holmgren A. 2014. The thioredoxin antioxidant system. Free Radical Biol. Med. 66: 75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
- Kuroda K, Ueda M. 2006. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl. Microbiol. Biotechnol. 70: 458-463. https://doi.org/10.1007/s00253-005-0093-8
- Barrera-Diaz CE, Lugo-Lugo V, Bilyeu B. 2012. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 223-224: 1-12. https://doi.org/10.1016/j.jhazmat.2012.04.054
- Thakur G, Jiang K, Lee D, Prashanthi K, Kim S, Thundat T. 2014. Investigation of pH-induced protein conformation changes by nanomechanical deflection. Langmuir 30: 2109-2116. https://doi.org/10.1021/la403981t
- Ayangbenro AS, Babalola OO. 2017. A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int. J. Environ. Res. Public Health. 14: 94. https://doi.org/10.3390/ijerph14010094
- Joutey NT, Sayel H, Bahafid W, El Ghachtouli N. 2015. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. Toxicol. 233: 45-69. https://doi.org/10.1007/978-3-319-10479-9_2
- Srinath T, Garg SK, Ramteke PW. 2003. Biosorption and elution of chromium from immobilized Bacillus coagulans biomass. Indian J. Exp. Biol. 41: 986-990.
- Ravulapalli S, Kunta R. 2018. Enhanced removal of chromium (VI) from wastewater using active carbon derived from Lantana camara plant as adsorbent. Water Sci. Technol. 78: 1377-1389. https://doi.org/10.2166/wst.2018.413
- Malaviya P, Singh A. 2016. Bioremediation of chromium solutions and chromium containing wastewaters. Crit. Rev. Microbiol. 42: 607-633. https://doi.org/10.3109/1040841X.2014.974501
- Lindsay DR, Farley KJ, Carbonaro RF. 2012. Oxidation of Cr(III) to Cr(VI) during chlorination of drinking water. J. Environ. Monit. 14: 1789-1797. https://doi.org/10.1039/c2em00012a
- Apte AD, Tare V, Bose P. 2006. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J. Hazard. Mater. 128: 164-174. https://doi.org/10.1016/j.jhazmat.2005.07.057
- Garg SK, Tripathi M, Srinath T. 2012. Strategies for chromium bioremediation of tannery effluent. Rev. Environ. Contam. Toxicol. 217: 75-140.
- Slonczewski JL, Rosen BP, Alger JR, Macnab RM. 1981. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc. Natil Acad. Sci. USA 78: 6271-6275. https://doi.org/10.1073/pnas.78.10.6271
- Kitko RD, Wilks JC, Garduque GM, Slonczewski JL. 2010. Osmolytes contribute to pH homeostasis of Escherichia coli. PLoS One 5: e10078. https://doi.org/10.1371/journal.pone.0010078
- Chandrangsu P, Rensing C, Helmann JD. 2017. Metal homeostasis and resistance in bacteria. Nature Rev. Microbiol. 15: 338-350. https://doi.org/10.1038/nrmicro.2017.15
- Couto N, Wood J, Barber J. 2016. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 95: 27-42. https://doi.org/10.1016/j.freeradbiomed.2016.02.028
- Stathopoulos C, Georgiou G, Earhart CF. 1996. Characterization of Escherichia coli expressing an Lpp'OmpA(46-159)-PhoA fusion protein localized in the outer membrane. Appl. Microbiol. Biotechnol. 45: 112-119. https://doi.org/10.1007/s002530050657