참고문헌
- Sakamoto K, Konings WN. 2003. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 89: 105-24.2. https://doi.org/10.1016/S0168-1605(03)00153-3
- Deng Y, Liu J, Li L, Fang H, Tu J, Li B, et al. 2015. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 206: 96-101. https://doi.org/10.1016/j.ijfoodmicro.2015.04.046
- Liu JY, Deng Y, Soteyome T, Li YY, Su JY, Li L, et al. 2018. Induction and recovery of the viable but nonculturable state of hopresistance Lactobacillus brevis. Front Microbiol. 9: 6. https://doi.org/10.3389/fmicb.2018.00006
- Rawat S. 2015. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci. 5: 47-56
- Bevilacqua A, Corbo M, Sinigaglia M. 2016. The Microbiological Quality of Food: Foodborne Spoilers, pp. 247-248. 1st Ed. Antonio Bevilacqua, Maria Rosaria Corbo and Milena Sinigaglia, Foggia, Italy.
- Bartowsky EJ. 2009. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48: 149-156. https://doi.org/10.1111/j.1472-765X.2008.02505.x
- Du Toit M, Pretorius I. S. 2000. Microbial spoilage and preservation of wine: using weapons from nature's own arsenal-a review. S. Afr. J. Enol. Vitic. 21: 74-96
- Holland R, Crow V, Curry B. 2011. Lactic Acid Bacteria Pediococcus spp., pp. 149-152. In Fuquay JW (ed.), Encyclopedia of Dairy Sciences (2nd Ed.), Ed. Academic Press, San Diego
- Back W. 1994. Secondary contamination in the filling area. Brauwelt Int. 4: 326-328.
- Yimin Z, Lixian Z, Wangang Z, Pengcheng D, Jiangang H, Xin L. 2018. An overview of spoilage microorganisms in fresh beef. Food Sci. 39: 289-296.
- Egan AF, Shay BJ, Rogers PJ. 1989. Factors affecting the production of hydrogen sulphide by Lactobacillus sake L13 growing on vacuum-packaged beef. J. Appl. Microbiol. 67: 255-262.
- Pothakos V, Devlieghere F, Villani F, Bjorkroth J, Ercolini D. 2015. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 109: 66-74. https://doi.org/10.1016/j.meatsci.2015.04.014
- Dainty RH, Mackey BM. 1992. The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. Soc. Appl. Bacteriol. Symp. Ser. 21: 103s-114s.
- Comi G, Iacumin L. 2012. Identification and process origin of bacteria responsible for cavities and volatile off-flavour compounds in artisan cooked ham. Int. J. Food Sci. Technol. 47: 114-121 https://doi.org/10.1111/j.1365-2621.2011.02816.x
- Aymerich T, Martin B, Garriga M, Hugas M. 2003. Microbial quality and direct PCR identification of lactic acid bacteria and nonpathogenic Staphylococci from artisanal low-acid sausages. Appl. Environ. Microbiol. 69: 4583-4594. https://doi.org/10.1128/AEM.69.8.4583-4594.2003
- Morgan ME. 1976. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 18: 953-965. https://doi.org/10.1002/bit.260180708
- Lafarge V, Ogier JC, Girard V, Maladen V, Leveau JY, Gruss A, et al. 2004. Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 70: 5644-5650. https://doi.org/10.1128/AEM.70.9.5644-5650.2004
- Somers EB, Johnson ME, Wong AC. 2001. Biofilm formation and contamination of cheese by nonstarter lactic acid bacteria in the dairy environment. J. Dairy Sci. 84: 1926-1936. https://doi.org/10.3168/jds.S0022-0302(01)74634-6
- Lyhs U, Korkeala H, Vandamme P, Bjorkroth J. 2001. Lactobacillus alimentarius: a specific spoilage organism in marinated herring. Int. J. Food Microbiol. 64: 355-360. https://doi.org/10.1016/S0168-1605(00)00486-4
- Entani E, Masai H, Suzuki KI. 1986. Lactobacillus acetotolerans, a new species from fermented vinegar broth. Int. J. Syst. Bacteriol. 36: 544-549. https://doi.org/10.1099/00207713-36-4-544
- Geissler AJ, Behr J, von Kamp K, Vogel RF. 2016. Metabolic strategies of beer spoilage lactic acid bacteria in beer. Int. J. Food Microbiol. 216: 60-68. https://doi.org/10.1016/j.ijfoodmicro.2015.08.016
- Bartowsky EJ, Henschke PA. 2004. The 'buttery' attribute of wine--diacetyl--desirability, spoilage and beyond. Int. J. Food Microbiol. 96: 235-252. https://doi.org/10.1016/j.ijfoodmicro.2004.05.013
- Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ. 2002. Mannitol production by lactic acid bacteria: a review. Int. Dairy J. 12: 151-161. https://doi.org/10.1016/S0958-6946(01)00153-4
- Bartowsky EJ. 2009. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48: 149-156. https://doi.org/10.1111/j.1472-765X.2008.02505.x
- Barbieri F, Montanari C, Gardini F, Tabanelli G. 2019. Biogenic amine production by lactic acid bacteria: a review. Foods 8: 17. https://doi.org/10.3390/foods8010017
- Xu HS, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8: 313-323. https://doi.org/10.1007/BF02010671
- Nowakowska J, Oliver JD. 2013. Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol. Ecol. 84: 213-222. https://doi.org/10.1111/1574-6941.12052
- Dwidjosiswojo Z, Richard J, Moritz MM, Dopp E, Flemming HC, Wingender J. 2011. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments. Int. J. Hyg. Environ. Health 214: 485-492. https://doi.org/10.1016/j.ijheh.2011.06.004
- Zhang SH, Ye CS, Lin HR, Lv L, Yu X. 2015. UV disinfection induces a Vbnc state in Escherichia coli and Pseudomonas aeruginosa. Environ. Sci. Technol. 49: 1721-1728. https://doi.org/10.1021/es505211e
- Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, et al. 2017. Study on spoilage capability and VBNC state formation and recovery of Lactobacillus plantarum. Microb. Pathog. 110: 257-261. https://doi.org/10.1016/j.micpath.2017.06.044
- Suzuki K, Iijima K, Asano S, Kuriyama H, Kitagawa Y. 2006. Induction of viable but nonculturable state in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 295-301. https://doi.org/10.1002/j.2050-0416.2006.tb00734.x
- Deng Y, Liu J, Li L, Fang H, Tu J, Li B, et al. 2015. Reduction and restoration of culturability of beer-stressed and low-temperature-stressed Lactobacillus acetotolerans strain 2011-8. Int. J. Food Microbiol. 206: 96-101. https://doi.org/10.1016/j.ijfoodmicro.2015.04.046
- Liu J, Li L, Li B, Peters BM, Deng Y, Xu Z, et al. 2017. First study on the formation and resuscitation of viable but nonculturable state and beer spoilage capability of Lactobacillus lindneri. Microb. Pathog. 107: 219-224. https://doi.org/10.1016/j.micpath.2017.03.043
- Yang D, Jun-yan L, Hui-jing F, Jiang C, Hui-ping L, Lin L, et al. 2014. Induction and resuscitation of VBNC state beer-spoilage lactobacilli. Mod. Food Sci. Technol. 30: 154-159.
- Liu JY, Deng Y, Soteyome T, Li YY, Su JY, Li L, et al. 2018. Induction and recovery of the viable but nonculturable state of hop-resistance Lactobacillus brevis. Front Microbiol. 9: 6. https://doi.org/10.3389/fmicb.2018.00006
- Liu J, Li L, Peters BM, Li B, Chen L, Deng Y, et al. 2017. The viable but nonculturable state induction and genomic analyses of Lactobacillus casei BM-LC14617, a beer-spoilage bacterium. Microbiologyopen 6: e00506. https://doi.org/10.1002/mbo3.506
- Yildiz FH, Schoolnik GK. 1998. Role of rpoS in stress survival and virulence of Vibrio cholerae. J. Bacteriol. 180: 773-784. https://doi.org/10.1128/JB.180.4.773-784.1998
- Magnusson LU, Farewell A, Nyström T. 2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13: 236-242. https://doi.org/10.1016/j.tim.2005.03.008
- Liu JY, Li L, Peters BM, Li B, Deng Y, Xu ZB, et al. 2016. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 363: 5.
- Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, et al. 2018. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep.8: 11446. https://doi.org/10.1038/s41598-018-28949-y
- Liu JY, Deng Y, Peters BM, Li L, Li B, Chen LQ, et al. 2016. Transcriptomic analysis on the formation of the viable putative non-culturable state of beer-spoilage Lactobacillus acetotolerans. Sci. Rep. 6: 11. https://doi.org/10.1038/s41598-016-0013-4
- John. DiMichele L, Lewis MJ. 1993. Rapid, species-specific detection of lactic acid bacteria from beer using the polymerase chain reaction. J. Am. Soc. Brew. Chem. 51:63-66.
- Suzuki K, Asano S, Iijima K, Kitamoto K. 2008. Sake and Beer Spoilage Lactic Acid Bacteria- A Review, 114: 209-223. https://doi.org/10.1002/j.2050-0416.2008.tb00331.x
- Sakamoto K, Margolles A, van Veen HW, Konings WN. 2001. Hop resistance in the beer spoilage bacterium Lactobacillus brevis is mediated by the ATP-binding cassette multidrug transporter HorA. J. Bacteriol. 183: 5371-5375. https://doi.org/10.1128/JB.183.18.5371-5375.2001
- Suzuki K, Iijima K, Ozaki K, Yamashita H. 2005. Study on ATP production of lactic acid bacteria in beer and development of a rapid pre-screening method for beer-spoilage bacteria. J. Inst. Brew. 114: 209-223. https://doi.org/10.1002/j.2050-0416.2008.tb00331.x
- Jun-yan L, Lin L, Bing L, Yang D, Zhen-bo X. 2015. Application of de novo sequencing in the whole genomic study of beer-spoilage lactobacilli. Mod. Food Sci. Technol. 31: 155-162.
- Liu J, Li L, Peters BM, Li B, Deng Y, Xu Z, et al. 2016. Draft genome sequence and annotation of Lactobacillus acetotolerans BM-LA14527, a beer-spoilage bacteria. FEMS Microbiol. Lett. 363: fnw201.
- Suzuki K, Iijima K, Ozaki K, Yamashita H. 2005. Isolation of a hop-sensitive variant of Lactobacillus lindneri and identification of genetic markers for beer spoilage ability of lactic acid bacteria. Appl. Environ. Microbiol. 71: 5089-5097. https://doi.org/10.1128/AEM.71.9.5089-5097.2005
- Iijima K, Suzuki K, Ozaki K, Yamashita H. 2006. horC confers beer-spoilage ability on hop-sensitive Lactobacillus brevis ABBC45cc. J. Appl. Microbiol. 100: 1282-1288. https://doi.org/10.1111/j.1365-2672.2006.02869.x
- Suzuki K, Koyanagi M, Yamashita H. 2004. Genetic characterization of non-spoilage variant isolated from beer-spoilage Lactobacillus brevis ABBC45. J. Appl. Microbiol. 96: 946-953. https://doi.org/10.1111/j.1365-2672.2004.02244.x
- Suzuki K, Iijima K, Sakamoto K, Sami M, Yamashita H. 2006. A review of hop resistance in beer spoilage lactic acid bacteria. J. Inst. Brew. 112: 173-191. https://doi.org/10.1002/j.2050-0416.2006.tb00247.x
- Suzuki K, Ozaki K, Yamashita H. 2004. Genetic marker for differentiating beer-spoilage ability of Lactobacillus paracollinoides strains. J. Appl. Microbiol. 97: 712-718. https://doi.org/10.1111/j.1365-2672.2004.02350.x
- Deng Y, Liu JY, Li HP, Li L, Tu JX, Fang HJ, et al. 2014. An improved plate culture procedure for the rapid detection of beer-spoilage lactic acid bacteria. J. Inst. Brew. 120: 127-132. https://doi.org/10.1002/jib.121
- Fricker M, Reissbrodt R, Ehling-Schulz M. 2008. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacilluscereus. Int. J. Food Microbiol. 121: 27-34. https://doi.org/10.1016/j.ijfoodmicro.2007.10.012
- Reissbrodt R. 2004. New chromogenic plating media for detection and enumeration of pathogenic Listeria spp.--An overview. Int. J. Food Microbiol. 95: 1-9. https://doi.org/10.1016/j.ijfoodmicro.2004.01.025
- Iversen C, Forsythe SJ. 2007. Comparison of media for the isolation of Enterobacter sakazakii. Appl. Environ. Microbiol. 73: 48-52. https://doi.org/10.1128/AEM.01562-06
- Xu Z, Hou Y, Peters BM, Chen D, Li B, Li L, et al. 2016. Chromogenic media for MRSA diagnostics. Mol. Biol. Rep.43: 1205-1212. https://doi.org/10.1007/s11033-016-4062-3
- Casey GD, Dobson AD. 2004. Potential of using real-time PCR-based detection of spoilage yeast in fruit juice--a preliminary study. Int. J. Food Microbiol. 91: 327-335. https://doi.org/10.1016/j.ijfoodmicro.2003.09.002
- Reynisson E, Lauzon HL, Magnusson H, Hreggvidsson GO, Marteinsson VT. 2008. Rapid quantitative monitoring method for the fish spoilage bacteria Pseudomonas. J. Environ. Monit. 10: 1357-1362. https://doi.org/10.1039/b806603e
- Juvonen R, Koivula T, Haikara A. 2008. Group-specific PCR-RFLP and real-time PCR methods for detection and tentative discrimination of strictly anaerobic beer-spoilage bacteria of the class Clostridia. Int. J. Food Microbiol. 125: 162-169. https://doi.org/10.1016/j.ijfoodmicro.2008.03.042
- Liu J, Deng Y, Li L, Li B, Li Y, Zhou S, et al. 2018. Discovery and control of culturable and viable but non-culturable cells of a distinctive Lactobacillus harbinensis strain from spoiled beer. Sci. Rep. 8: 11446. https://doi.org/10.1038/s41598-018-28949-y
- Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63. https://doi.org/10.1093/nar/28.12.e63
- Fire A, Xu SQ. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92: 4641-4645. https://doi.org/10.1073/pnas.92.10.4641
- Walker GT, Little MC, Nadeau JG, Shank DD. 1992. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 89: 392-396. https://doi.org/10.1073/pnas.89.1.392
- Xu G, Hu L, Zhong H, Wang H, Yusa S, Weiss TC, et al. 2012. Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Sci. Rep. 2: 246. https://doi.org/10.1038/srep00246
- Yun-Zhe Z, Xian-Zhou Z, Ying-Jun L, Xiao-Yan M, Wei Z. 2016. Rapid detection of Lactobacillus acidophilus in yogurt by loop-mediated isothermal amplification. J. Food Safety Qual. 7: 4581-4585.
- Xin L, Zhang L, Meng Z, Lin K, Zhang S, Han X, et al. 2017. Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from North China. J. Dairy Sci. 100: 7802-7811. https://doi.org/10.3168/jds.2017-12740
- Yin H, Dong J, Yu J, Li Y, Deng Y. 2018. A novel horA genetic mediated RCA detection of beer spoilage lactobacillus. Microb. Pathog. 114: 311-314. https://doi.org/10.1016/j.micpath.2017.11.064
- Wang L, Li Y, Chu J, Xu Z, Zhong Q. 2012. Development and application of a simple loop-mediated isothermal amplification method on rapid detection of Listeria monocytogenes strains. Mol. Biol. Rep. 39: 445-449. https://doi.org/10.1007/s11033-011-0757-7
- Xu Z, Li L, Chu J, Peters BM, Harris ML, Li B, et al. 2012. Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res. Int. 47: 166-173. https://doi.org/10.1016/j.foodres.2011.04.042
-
Qing-xin G, Bin Y, Hua Q. 2016. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the detection of MRSA
$\delta$ -toxin. J. Chin. Antibiotics 44: 455-459. - van Baar BL. 2000. Characterisation of bacteria by matrix-assisted laser desorption/ ionisation and electrospray mass spectrometry. FEMS Microbiol. Rev. 24: 193-219. https://doi.org/10.1016/S0168-6445(99)00036-4
- Bohme K, Fernandez-No IC, Barros-Velazquez J, Gallardo JM, Calo-Mata P, Canas B. 2010. Species differentiation of seafood spoilage and pathogenic gram-negative bacteria by MALDI-TOF mass fingerprinting. J. Proteome Res. 9: 3169-3183. https://doi.org/10.1021/pr100047q
- Doan NTL, Van Hoorde K, Cnockaert M, De Brandt E, Aerts M, Thanh BL, et al. 2012. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett. Appl. Microbiol. 55: 265-273. https://doi.org/10.1111/j.1472-765X.2012.03287.x
- Tanigawa K, Kawabata H, Watanabe, K. 2010. Identification and typing of Lactococcus lactis by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 76: 4055-4062. https://doi.org/10.1128/AEM.02698-09
- De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B, Vandamme P. 2011 Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst. Appl. Microbiol. 34: 20-29. https://doi.org/10.1016/j.syapm.2010.11.003
- Bellanger AP, Gbaguidi-Haore H, Liapis E, Scherer E, Millon L. 2019. Rapid identification of Candida sp. by MALDI-TOF mass spectrometry subsequent to short-term incubation on a solid medium. APMIS 127: 217-222. https://doi.org/10.1111/apm.12936
피인용 문헌
- Formation and Control of the Viable but Non-culturable State of Foodborne Pathogen Escherichia coli O157:H7 vol.11, 2020, https://doi.org/10.3389/fmicb.2020.01202
- Pathogenic and Virulence Factor Detection on Viable but Non-culturable Methicillin-Resistant Staphylococcus aureus vol.12, 2020, https://doi.org/10.3389/fmicb.2021.630053
- First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions vol.11, 2020, https://doi.org/10.3389/fmicb.2020.615875
- Probiotic and Potentially Probiotic Yeasts-Characteristics and Food Application vol.10, pp.6, 2020, https://doi.org/10.3390/foods10061306
- Recent Advancements in the Technologies Detecting Food Spoiling Agents vol.12, pp.4, 2020, https://doi.org/10.3390/jfb12040067
- A novel procedure in combination of genomic sequencing, flow cytometry and routine culturing for confirmation of beer spoilage caused by Pediococcus damnosus in viable but nonculturable state vol.154, 2020, https://doi.org/10.1016/j.lwt.2021.112623