References
- Adam, E., Hussong, A., Bindics, J., Wust, F., Viczian, A., Essing, M., Medzihradszky, M., Kircher, S., Schafer, E., and Nagy, F. (2011). Altered dark- and photoconversion of phytochrome B mediate extreme light sensitivity and loss of photoreversibility of the phyB-401 mutant. PLoS One 6, e27250. https://doi.org/10.1371/journal.pone.0027250
- Bita, C.E. and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4, 273. https://doi.org/10.3389/fpls.2013.00273
- Blazquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168-171. https://doi.org/10.1038/ng1085
- Box, M.S., Huang, B.E., Domijan, M., Jaeger, K.E., Khattak, A.K., Yoo, S.J., Sedivy, E.L., Jones, D.M., Hearn, T.J., Webb, A.A.R., et al. (2015). ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25, 194-199. https://doi.org/10.1016/j.cub.2014.10.076
- Casal, J.J. and Balasubramanian, S. (2019). Thermomorphogenesis. Annu. Rev. Plant Biol. 70, 321-346. https://doi.org/10.1146/annurev-arplant-050718-095919
- Chauhan, S., Srivalli, S., Nautiyal, A.R., and Khanna-Chopra, R. (2009). Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica 47, 536-547. https://doi.org/10.1007/s11099-009-0079-3
- Chen, M., Schwab, R., and Chory, J. (2003). Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc. Natl. Acad. Sci. U. S. A. 100, 14493-14498. https://doi.org/10.1073/pnas.1935989100
- Christie, J.M. (2007). Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45. https://doi.org/10.1146/annurev.arplant.58.032806.103951
- Chung, B.Y.W., Balcerowicz, M., Di Antonio, M., Jaeger, K.E., Geng, F., Franaszek, K., Marriott, P., Brierley, I., Firth, A.E., and Wigge, P.A. (2020). An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat. Plants 6, 522-532. https://doi.org/10.1038/s41477-020-0633-3
- Crawford, A.J., McLachlan, D.H., Hetherington, A.M., and Franklin, K.A. (2012). High temperature exposure increases plant cooling capacity. Curr. Biol. 22, R396-R397. https://doi.org/10.1016/j.cub.2012.03.044
- Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122
- De La Haba, P., De La Mata, L., Molina, E., and Aguera, E. (2014). High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L.) plants. Can. J. Plant Sci. 94, 659-669. https://doi.org/10.4141/cjps2013-276
- Delker, C., Sonntag, L., James, G.V., Janitza, P., Ibanez, C., Ziermann, H., Peterson, T., Denk, K., Mull, S., Ziegler, J., et al. (2014). The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep. 9, 1983-1989. https://doi.org/10.1016/j.celrep.2014.11.043
- Ding, Y., Shi, Y., and Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Mol. Plant 13, 544-564. https://doi.org/10.1016/j.molp.2020.02.004
- Djanaguiraman, M., Vara Prasad, P.V., Murugan, M., Perumal, R., and Reddy, U.K. (2014). Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ. Exp. Bot. 100, 43-54. https://doi.org/10.1016/j.envexpbot.2013.11.013
- Dubois, M., Van den Broeck, L., and Inze, D. (2018). The pivotal role of ethylene in plant growth. Trends Plant Sci. 23, 311-323. https://doi.org/10.1016/j.tplants.2018.01.003
- Eichenberg, K., Baurle, I., Paulo, N., Sharrock, R.A., Rudiger, W., and Schafer, E. (2000). Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett. 470, 107-112. https://doi.org/10.1016/S0014-5793(00)01301-6
- Eichenberg, K., Kunkel, T., Kretsch, T., Speth, V., and Schafer, E. (1999). In vivo characterization of chimeric phytochromes in yeast. J. Biol. Chem. 274, 354-359. https://doi.org/10.1074/jbc.274.1.354
- Ezer, D., Jung, J.H., Lan, H., Biswas, S., Gregoire, L., Box, M.S., Charoensawan, V., Cortijo, S., Lai, X., Stockle, D., et al. (2017). The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3, 17087. https://doi.org/10.1038/nplants.2017.87
- Finch, C.E. (1990). Longevity, Senescence, and the Genome (Chicago: University of Chicago Press).
- Findlay, K.M. and Jenkins, G.I. (2016). Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environ. 39, 1706-1714. https://doi.org/10.1111/pce.12724
- Foreman, J., Johansson, H., Hornitschek, P., Josse, E.M., Fankhauser, C., and Halliday, K.J. (2011). Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J. 65, 441-452. https://doi.org/10.1111/j.1365-313X.2010.04434.x
- Fujii, Y., Tanaka, H., Konno, N., Ogasawara, Y., Hamashima, N., Tamura, S., Hasegawa, S., Hayasaki, Y., Okajima, K., and Kodama, Y. (2017). Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc. Natl. Acad. Sci. U. S. A. 114, 9206-9211. https://doi.org/10.1073/pnas.1704462114
- Gangappa, S.N. and Kumar, S.V. (2017). DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep. 18, 344-351. https://doi.org/10.1016/j.celrep.2016.12.046
- Gray, W.M., Ostin, A., Sandberg, G., Romano, C.P., and Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 95, 7197-7202. https://doi.org/10.1073/pnas.95.12.7197
- Hahm, J., Kim, K., Qiu, Y., and Chen, M. (2020). Increasing ambient temperature progressively disassemble Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 11, 1660. https://doi.org/10.1038/s41467-020-15526-z
- Halliday, K.J., Salter, M.G., Thingnaes, E., and Whitelam, G.C. (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33, 875-885. https://doi.org/10.1046/j.1365-313X.2003.01674.x
- Han, X., Yu, H., Yuan, R., Yang, Y., An, F., and Qin, G. (2019). Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity. iScience 15, 611-622. https://doi.org/10.1016/j.isci.2019.04.005
- Hayes, S., Sharma, A., Fraser, D.P., Trevisan, M., Cragg-Barber, C.K., Tavridou, E., Fankhauser, C., Jenkins, G.I., and Franklin, K.A. (2017). UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr. Biol. 27, 120-127. https://doi.org/10.1016/j.cub.2016.11.004
- Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., and Batschauer, A. (2013). Lifetimes of Arabidopsis cryptochrome signaling states in vivo. Plant J. 74, 583-592. https://doi.org/10.1111/tpj.12144
- Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., and Fankhauser, C. (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28, 3893-3902. https://doi.org/10.1038/emboj.2009.306
- Huang, H., Yoo, C.Y., Bindbeutel, R., Goldsworthy, J., Tielking, A., Alvarez, S., Naldrett, M.J., Evans, B.S., Chen, M., and Nusinow, D.A. (2016). PCH1 integrates circadian and light-signaling pathways to control photoperiodresponsive growth in Arabidopsis. Elife 5, e13292. https://doi.org/10.7554/elife.13292
- Jespersen, D., Zhang, J., and Huang, B. (2016). Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci. 249, 1-12. https://doi.org/10.1016/j.plantsci.2016.04.016
- Johansson, H., Jones, H.J., Foreman, J., Hemsted, J.R., Stewart, K., Grima, R., and Halliday, K.J. (2014). Arabidopsis cell expansion is controlled by a photothermal switch. Nat. Commun. 5, 4848. https://doi.org/10.1038/ncomms5848
- Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., et al. (2016). Phytochromes function as thermosensors in Arabidopsis. Science 354, 886-889. https://doi.org/10.1126/science.aaf6005
- Keil, G., Cummings, E., and de Magalhaes, J.P. (2015). Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383-397. https://doi.org/10.1007/s10522-015-9571-2
- Klose, C., Venezia, F., Hussong, A., Kircher, S., Schafer, E., and Fleck, C. (2015). Systematic analysis of how phytochrome B dimerization determines its specificity. Nat. Plants 1, 15090. https://doi.org/10.1038/nplants.2015.90
- Kodama, Y., Tsuboi, H., Kagawa, T., and Wada, M. (2008). Low temperatureinduced chloroplast relocation mediated by a blue light receptor, phototropin 2, in fern gametophytes. J. Plant Res. 121, 441-448. https://doi.org/10.1007/s10265-008-0165-9
- Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., and Franklin, K.A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408-413. https://doi.org/10.1016/j.cub.2009.01.046
- Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, N.P., and Wigge, P.A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245. https://doi.org/10.1038/nature10928
- Kumar, S.V. and Wigge, P.A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136-147. https://doi.org/10.1016/j.cell.2009.11.006
- Kunkel, T., Speth, V., Buche, C., and Schafer, E. (1995). In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. J. Biol. Chem. 270, 20193-20200. https://doi.org/10.1074/jbc.270.34.20193
- Lee, H.J., Jung, J.H., Cortes Llorca, L., Kim, S.G., Lee, S., Baldwin, I.T., and Park, C.M. (2014). FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5, 5473. https://doi.org/10.1038/ncomms6473
- Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749. https://doi.org/10.1105/tpc.106.047688
- Legris, M., Klose, C., Burgie, E.S., Rojas, C.C., Neme, M., Hiltbrunner, A., Wigge, P.A., Schafer, E., Vierstra, R.D., and Casal, J.J. (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897-900. https://doi.org/10.1126/science.aaf5656
- Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25, 3311-3328. https://doi.org/10.1105/tpc.113.113340
- Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
- Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136. https://doi.org/10.1146/annurev.arplant.57.032905.105316
- Lim, S., Park, J., Lee, N., Jeong, J., Toh, S., Watanabe, A., Kim, J., Kang, H., Kim, D.H., Kawakami, N., et al. (2013). ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25, 4863-4878. https://doi.org/10.1105/tpc.113.118604
- Lippmann, R., Babben, S., Menger, A., Delker, C., and Quint, M. (2019). Development of wild and cultivated plants under global warming conditions. Curr. Biol. 29, R1326-R1338. https://doi.org/10.1016/j.cub.2019.10.016
- Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., Noel, J.P., and Liu, H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperaturemediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. U. S. A. 113, 224-229. https://doi.org/10.1073/pnas.1511437113
- Miquel, J., Lundgren, P.R., Bensch, K.G., and Atlan, H. (1976). Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347-370. https://doi.org/10.1016/0047-6374(76)90034-8
- Mizuno, T., Nomoto, Y., Oka, H., Kitayama, M., Takeuchi, A., Tsubouchi, M., and Yamashino, T. (2014). Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol. 55, 958-976. https://doi.org/10.1093/pcp/pcu030
- Munch, S.B. and Salinas, S. (2009). Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl. Acad. Sci. U. S. A. 106, 13860-13864. https://doi.org/10.1073/pnas.0900300106
- Ni, W., Xu, S.L., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D., Burlingame, A.L., Wang, Z.Y., and Quail, P.H. (2014). A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160-1164. https://doi.org/10.1126/science.1250778
- Nomoto, Y., Kubozono, S., Miyachi, M., Yamashino, T., Nakamichi, N., and Mizuno, T. (2012). A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol. 53, 1965-1973. https://doi.org/10.1093/pcp/pcs141
- Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre, E.M., and Kay, S.A. (2011). The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398-402. https://doi.org/10.1038/nature10182
- Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Sun, T.P., Kamiya, Y., and Choi, G. (2007). PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 1192-1208. https://doi.org/10.1105/tpc.107.050153
- Ohgishi, M., Saji, K., Okada, K., and Sakai, T. (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 101, 2223-2228. https://doi.org/10.1073/pnas.0305984101
- Park, Y.J., Lee, H.J., Ha, J.H., Kim, J.Y., and Park, C.M. (2017). COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 215, 269-280. https://doi.org/10.1111/nph.14581
- Qiu, Y., Li, M., Kim, R.J., Moore, C.M., and Chen, M. (2019). Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 10, 140. https://doi.org/10.1038/s41467-018-08059-z
- Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J., and van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190. https://doi.org/10.1038/nplants.2015.190
- Remberg, A., Ruddat, A., Braslavsky, S.E., Gartner, W., and Schaffner, K. (1998). Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins. Biochemistry 37, 9983-9990. https://doi.org/10.1021/bi980575x
- Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., and Choi, G. (2014). Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636. https://doi.org/10.1038/ncomms5636
- Silva, C.S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J.H., Lopez-Vidriero, I., Franco-Zorrilla, J.M., Panigrahi, K.C.S., Nanao, M.H., et al. (2020). Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 117, 6901-6909. https://doi.org/10.1073/pnas.1920972117
- Song, Y., Yang, C., Gao, S., Zhang, W., Li, L., and Kuai, B. (2014). Agetriggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol. Plant 7, 1776-1787. https://doi.org/10.1093/mp/ssu109
- Stavang, J.A., Gallego-Bartolome, J., Gomez, M.D., Yoshida, S., Asami, T., Olsen, J.E., Garcia-Martinez, J.L., Alabadi, D., and Blazquez, M.A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589-601. https://doi.org/10.1111/j.1365-313X.2009.03983.x
- Sun, J., Qi, L., Li, Y., Chu, J., and Li, C. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet. 8, e1002594. https://doi.org/10.1371/journal.pgen.1002594
- Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E., and Harter, K. (2001). Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 1108-1111. https://doi.org/10.1126/science.1065022
- Van Buskirk, E.K., Reddy, A.K., Nagatani, A., and Chen, M. (2014). Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol. 165, 595-607. https://doi.org/10.1104/pp.114.236661
- Van Voorhies, W.A. and Ward, S. (1999). Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl. Acad. Sci. U. S. A. 96, 11399-11403. https://doi.org/10.1073/pnas.96.20.11399
- Vu, L.D., Gevaert, K., and De Smet, I. (2019). Feeling the heat: searching for plant thermosensors. Trends Plant Sci. 24, 210-219. https://doi.org/10.1016/j.tplants.2018.11.004
- Waalen, J. and Buxbaum, J.N. (2011). Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med. Sci. 66, 487-492. https://doi.org/10.1093/gerona/glr001
- Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bako, L., Fankhauser, C., and Nilsson, O. (2017). BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife 6, e26759. https://doi.org/10.7554/elife.26759
- Zhou, Y., Xun, Q., Zhang, D., Lv, M., Ou, Y., and Li, J. (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15, 600-610. https://doi.org/10.1016/j.isci.2019.04.002
Cited by
- Characterization of Phytochrome-Interacting Factor Genes in Pepper and Functional Analysis of CaPIF8 in Cold and Salt Stress vol.12, 2020, https://doi.org/10.3389/fpls.2021.746517
- PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis vol.72, pp.12, 2021, https://doi.org/10.1093/jxb/erab158
- Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development vol.186, pp.2, 2021, https://doi.org/10.1093/plphys/kiab112
- Hot topic: Thermosensing in plants vol.44, pp.7, 2021, https://doi.org/10.1111/pce.13979
- Arabidopsis WRKY71 regulates ethylene‐mediated leaf senescence by directly activating EIN2, ORE1 and ACS2 genes vol.107, pp.6, 2020, https://doi.org/10.1111/tpj.15433