DOI QR코드

DOI QR Code

High Ambient Temperature Accelerates Leaf Senescence via PHYTOCHROME-INTERACTING FACTOR 4 and 5 in Arabidopsis

  • Kim, Chanhee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Sun Ji (Center for Plant Aging Research, Institute for Basic Science) ;
  • Jeong, Jinkil (Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies) ;
  • Park, Eunae (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, Eunkyoo (Division of Life Sciences, Korea University) ;
  • Park, Youn-Il (Department of Biological Sciences and Graduate School of Analytical Science and Technology, Chungnam National University) ;
  • Lim, Pyung Ok (Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST)) ;
  • Choi, Giltsu (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.05.11
  • Accepted : 2020.06.10
  • Published : 2020.07.31

Abstract

Leaf senescence is a developmental process by which a plant actively remobilizes nutrients from aged and photosynthetically inefficient leaves to young growing ones by disassembling organelles and degrading macromolecules. Senescence is accelerated by age and environmental stresses such as prolonged darkness. Phytochrome B (phyB) inhibits leaf senescence by inhibiting phytochrome-interacting factor 4 (PIF4) and PIF5 in prolonged darkness. However, it remains unknown whether phyB mediates the temperature signal that regulates leaf senescence. We found the light-activated form of phyB (Pfr) remains active at least four days after a transfer to darkness at 20℃ but is inactivated more rapidly at 28℃. This faster inactivation of Pfr further increases PIF4 protein levels at the higher ambient temperature. In addition, PIF4 mRNA levels rise faster after the transfer to darkness at high ambient temperature via a mechanism that depends on ELF3 but not phyB. Increased PIF4 protein then binds to the ORE1 promoter and activates its expression together with ABA and ethylene signaling, accelerating leaf senescence at high ambient temperature. Our results support a role for the phy-PIF signaling module in integrating not only light signaling but also temperature signaling in the regulation of leaf senescence.

Keywords

References

  1. Adam, E., Hussong, A., Bindics, J., Wust, F., Viczian, A., Essing, M., Medzihradszky, M., Kircher, S., Schafer, E., and Nagy, F. (2011). Altered dark- and photoconversion of phytochrome B mediate extreme light sensitivity and loss of photoreversibility of the phyB-401 mutant. PLoS One 6, e27250. https://doi.org/10.1371/journal.pone.0027250
  2. Bita, C.E. and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 4, 273. https://doi.org/10.3389/fpls.2013.00273
  3. Blazquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168-171. https://doi.org/10.1038/ng1085
  4. Box, M.S., Huang, B.E., Domijan, M., Jaeger, K.E., Khattak, A.K., Yoo, S.J., Sedivy, E.L., Jones, D.M., Hearn, T.J., Webb, A.A.R., et al. (2015). ELF3 controls thermoresponsive growth in Arabidopsis. Curr. Biol. 25, 194-199. https://doi.org/10.1016/j.cub.2014.10.076
  5. Casal, J.J. and Balasubramanian, S. (2019). Thermomorphogenesis. Annu. Rev. Plant Biol. 70, 321-346. https://doi.org/10.1146/annurev-arplant-050718-095919
  6. Chauhan, S., Srivalli, S., Nautiyal, A.R., and Khanna-Chopra, R. (2009). Wheat cultivars differing in heat tolerance show a differential response to monocarpic senescence under high-temperature stress and the involvement of serine proteases. Photosynthetica 47, 536-547. https://doi.org/10.1007/s11099-009-0079-3
  7. Chen, M., Schwab, R., and Chory, J. (2003). Characterization of the requirements for localization of phytochrome B to nuclear bodies. Proc. Natl. Acad. Sci. U. S. A. 100, 14493-14498. https://doi.org/10.1073/pnas.1935989100
  8. Christie, J.M. (2007). Phototropin blue-light receptors. Annu. Rev. Plant Biol. 58, 21-45. https://doi.org/10.1146/annurev.arplant.58.032806.103951
  9. Chung, B.Y.W., Balcerowicz, M., Di Antonio, M., Jaeger, K.E., Geng, F., Franaszek, K., Marriott, P., Brierley, I., Firth, A.E., and Wigge, P.A. (2020). An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat. Plants 6, 522-532. https://doi.org/10.1038/s41477-020-0633-3
  10. Crawford, A.J., McLachlan, D.H., Hetherington, A.M., and Franklin, K.A. (2012). High temperature exposure increases plant cooling capacity. Curr. Biol. 22, R396-R397. https://doi.org/10.1016/j.cub.2012.03.044
  11. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651-679. https://doi.org/10.1146/annurev-arplant-042809-112122
  12. De La Haba, P., De La Mata, L., Molina, E., and Aguera, E. (2014). High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L.) plants. Can. J. Plant Sci. 94, 659-669. https://doi.org/10.4141/cjps2013-276
  13. Delker, C., Sonntag, L., James, G.V., Janitza, P., Ibanez, C., Ziermann, H., Peterson, T., Denk, K., Mull, S., Ziegler, J., et al. (2014). The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep. 9, 1983-1989. https://doi.org/10.1016/j.celrep.2014.11.043
  14. Ding, Y., Shi, Y., and Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Mol. Plant 13, 544-564. https://doi.org/10.1016/j.molp.2020.02.004
  15. Djanaguiraman, M., Vara Prasad, P.V., Murugan, M., Perumal, R., and Reddy, U.K. (2014). Physiological differences among sorghum (Sorghum bicolor L. Moench) genotypes under high temperature stress. Environ. Exp. Bot. 100, 43-54. https://doi.org/10.1016/j.envexpbot.2013.11.013
  16. Dubois, M., Van den Broeck, L., and Inze, D. (2018). The pivotal role of ethylene in plant growth. Trends Plant Sci. 23, 311-323. https://doi.org/10.1016/j.tplants.2018.01.003
  17. Eichenberg, K., Baurle, I., Paulo, N., Sharrock, R.A., Rudiger, W., and Schafer, E. (2000). Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett. 470, 107-112. https://doi.org/10.1016/S0014-5793(00)01301-6
  18. Eichenberg, K., Kunkel, T., Kretsch, T., Speth, V., and Schafer, E. (1999). In vivo characterization of chimeric phytochromes in yeast. J. Biol. Chem. 274, 354-359. https://doi.org/10.1074/jbc.274.1.354
  19. Ezer, D., Jung, J.H., Lan, H., Biswas, S., Gregoire, L., Box, M.S., Charoensawan, V., Cortijo, S., Lai, X., Stockle, D., et al. (2017). The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat. Plants 3, 17087. https://doi.org/10.1038/nplants.2017.87
  20. Finch, C.E. (1990). Longevity, Senescence, and the Genome (Chicago: University of Chicago Press).
  21. Findlay, K.M. and Jenkins, G.I. (2016). Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. Plant Cell Environ. 39, 1706-1714. https://doi.org/10.1111/pce.12724
  22. Foreman, J., Johansson, H., Hornitschek, P., Josse, E.M., Fankhauser, C., and Halliday, K.J. (2011). Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J. 65, 441-452. https://doi.org/10.1111/j.1365-313X.2010.04434.x
  23. Fujii, Y., Tanaka, H., Konno, N., Ogasawara, Y., Hamashima, N., Tamura, S., Hasegawa, S., Hayasaki, Y., Okajima, K., and Kodama, Y. (2017). Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc. Natl. Acad. Sci. U. S. A. 114, 9206-9211. https://doi.org/10.1073/pnas.1704462114
  24. Gangappa, S.N. and Kumar, S.V. (2017). DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep. 18, 344-351. https://doi.org/10.1016/j.celrep.2016.12.046
  25. Gray, W.M., Ostin, A., Sandberg, G., Romano, C.P., and Estelle, M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 95, 7197-7202. https://doi.org/10.1073/pnas.95.12.7197
  26. Hahm, J., Kim, K., Qiu, Y., and Chen, M. (2020). Increasing ambient temperature progressively disassemble Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat. Commun. 11, 1660. https://doi.org/10.1038/s41467-020-15526-z
  27. Halliday, K.J., Salter, M.G., Thingnaes, E., and Whitelam, G.C. (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J. 33, 875-885. https://doi.org/10.1046/j.1365-313X.2003.01674.x
  28. Han, X., Yu, H., Yuan, R., Yang, Y., An, F., and Qin, G. (2019). Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity. iScience 15, 611-622. https://doi.org/10.1016/j.isci.2019.04.005
  29. Hayes, S., Sharma, A., Fraser, D.P., Trevisan, M., Cragg-Barber, C.K., Tavridou, E., Fankhauser, C., Jenkins, G.I., and Franklin, K.A. (2017). UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr. Biol. 27, 120-127. https://doi.org/10.1016/j.cub.2016.11.004
  30. Herbel, V., Orth, C., Wenzel, R., Ahmad, M., Bittl, R., and Batschauer, A. (2013). Lifetimes of Arabidopsis cryptochrome signaling states in vivo. Plant J. 74, 583-592. https://doi.org/10.1111/tpj.12144
  31. Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., and Fankhauser, C. (2009). Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28, 3893-3902. https://doi.org/10.1038/emboj.2009.306
  32. Huang, H., Yoo, C.Y., Bindbeutel, R., Goldsworthy, J., Tielking, A., Alvarez, S., Naldrett, M.J., Evans, B.S., Chen, M., and Nusinow, D.A. (2016). PCH1 integrates circadian and light-signaling pathways to control photoperiodresponsive growth in Arabidopsis. Elife 5, e13292. https://doi.org/10.7554/elife.13292
  33. Jespersen, D., Zhang, J., and Huang, B. (2016). Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci. 249, 1-12. https://doi.org/10.1016/j.plantsci.2016.04.016
  34. Johansson, H., Jones, H.J., Foreman, J., Hemsted, J.R., Stewart, K., Grima, R., and Halliday, K.J. (2014). Arabidopsis cell expansion is controlled by a photothermal switch. Nat. Commun. 5, 4848. https://doi.org/10.1038/ncomms5848
  35. Jung, J.H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A.K., Box, M.S., Charoensawan, V., Cortijo, S., et al. (2016). Phytochromes function as thermosensors in Arabidopsis. Science 354, 886-889. https://doi.org/10.1126/science.aaf6005
  36. Keil, G., Cummings, E., and de Magalhaes, J.P. (2015). Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383-397. https://doi.org/10.1007/s10522-015-9571-2
  37. Klose, C., Venezia, F., Hussong, A., Kircher, S., Schafer, E., and Fleck, C. (2015). Systematic analysis of how phytochrome B dimerization determines its specificity. Nat. Plants 1, 15090. https://doi.org/10.1038/nplants.2015.90
  38. Kodama, Y., Tsuboi, H., Kagawa, T., and Wada, M. (2008). Low temperatureinduced chloroplast relocation mediated by a blue light receptor, phototropin 2, in fern gametophytes. J. Plant Res. 121, 441-448. https://doi.org/10.1007/s10265-008-0165-9
  39. Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., and Franklin, K.A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408-413. https://doi.org/10.1016/j.cub.2009.01.046
  40. Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, N.P., and Wigge, P.A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245. https://doi.org/10.1038/nature10928
  41. Kumar, S.V. and Wigge, P.A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136-147. https://doi.org/10.1016/j.cell.2009.11.006
  42. Kunkel, T., Speth, V., Buche, C., and Schafer, E. (1995). In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. J. Biol. Chem. 270, 20193-20200. https://doi.org/10.1074/jbc.270.34.20193
  43. Lee, H.J., Jung, J.H., Cortes Llorca, L., Kim, S.G., Lee, S., Baldwin, I.T., and Park, C.M. (2014). FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat. Commun. 5, 5473. https://doi.org/10.1038/ncomms6473
  44. Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X.W. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731-749. https://doi.org/10.1105/tpc.106.047688
  45. Legris, M., Klose, C., Burgie, E.S., Rojas, C.C., Neme, M., Hiltbrunner, A., Wigge, P.A., Schafer, E., Vierstra, R.D., and Casal, J.J. (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354, 897-900. https://doi.org/10.1126/science.aaf5656
  46. Li, Z., Peng, J., Wen, X., and Guo, H. (2013). Ethylene-insensitive3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25, 3311-3328. https://doi.org/10.1105/tpc.113.113340
  47. Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
  48. Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136. https://doi.org/10.1146/annurev.arplant.57.032905.105316
  49. Lim, S., Park, J., Lee, N., Jeong, J., Toh, S., Watanabe, A., Kim, J., Kang, H., Kim, D.H., Kawakami, N., et al. (2013). ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25, 4863-4878. https://doi.org/10.1105/tpc.113.118604
  50. Lippmann, R., Babben, S., Menger, A., Delker, C., and Quint, M. (2019). Development of wild and cultivated plants under global warming conditions. Curr. Biol. 29, R1326-R1338. https://doi.org/10.1016/j.cub.2019.10.016
  51. Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., Noel, J.P., and Liu, H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperaturemediated hypocotyl elongation in response to blue light. Proc. Natl. Acad. Sci. U. S. A. 113, 224-229. https://doi.org/10.1073/pnas.1511437113
  52. Miquel, J., Lundgren, P.R., Bensch, K.G., and Atlan, H. (1976). Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mech. Ageing Dev. 5, 347-370. https://doi.org/10.1016/0047-6374(76)90034-8
  53. Mizuno, T., Nomoto, Y., Oka, H., Kitayama, M., Takeuchi, A., Tsubouchi, M., and Yamashino, T. (2014). Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. Plant Cell Physiol. 55, 958-976. https://doi.org/10.1093/pcp/pcu030
  54. Munch, S.B. and Salinas, S. (2009). Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl. Acad. Sci. U. S. A. 106, 13860-13864. https://doi.org/10.1073/pnas.0900300106
  55. Ni, W., Xu, S.L., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D., Burlingame, A.L., Wang, Z.Y., and Quail, P.H. (2014). A mutually assured destruction mechanism attenuates light signaling in Arabidopsis. Science 344, 1160-1164. https://doi.org/10.1126/science.1250778
  56. Nomoto, Y., Kubozono, S., Miyachi, M., Yamashino, T., Nakamichi, N., and Mizuno, T. (2012). A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol. 53, 1965-1973. https://doi.org/10.1093/pcp/pcs141
  57. Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre, E.M., and Kay, S.A. (2011). The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398-402. https://doi.org/10.1038/nature10182
  58. Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Sun, T.P., Kamiya, Y., and Choi, G. (2007). PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 1192-1208. https://doi.org/10.1105/tpc.107.050153
  59. Ohgishi, M., Saji, K., Okada, K., and Sakai, T. (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 101, 2223-2228. https://doi.org/10.1073/pnas.0305984101
  60. Park, Y.J., Lee, H.J., Ha, J.H., Kim, J.Y., and Park, C.M. (2017). COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol. 215, 269-280. https://doi.org/10.1111/nph.14581
  61. Qiu, Y., Li, M., Kim, R.J., Moore, C.M., and Chen, M. (2019). Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat. Commun. 10, 140. https://doi.org/10.1038/s41467-018-08059-z
  62. Quint, M., Delker, C., Franklin, K.A., Wigge, P.A., Halliday, K.J., and van Zanten, M. (2016). Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190. https://doi.org/10.1038/nplants.2015.190
  63. Remberg, A., Ruddat, A., Braslavsky, S.E., Gartner, W., and Schaffner, K. (1998). Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins. Biochemistry 37, 9983-9990. https://doi.org/10.1021/bi980575x
  64. Sakuraba, Y., Jeong, J., Kang, M.Y., Kim, J., Paek, N.C., and Choi, G. (2014). Phytochrome-interacting transcription factors PIF4 and PIF5 induce leaf senescence in Arabidopsis. Nat. Commun. 5, 4636. https://doi.org/10.1038/ncomms5636
  65. Silva, C.S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J.H., Lopez-Vidriero, I., Franco-Zorrilla, J.M., Panigrahi, K.C.S., Nanao, M.H., et al. (2020). Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 117, 6901-6909. https://doi.org/10.1073/pnas.1920972117
  66. Song, Y., Yang, C., Gao, S., Zhang, W., Li, L., and Kuai, B. (2014). Agetriggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5. Mol. Plant 7, 1776-1787. https://doi.org/10.1093/mp/ssu109
  67. Stavang, J.A., Gallego-Bartolome, J., Gomez, M.D., Yoshida, S., Asami, T., Olsen, J.E., Garcia-Martinez, J.L., Alabadi, D., and Blazquez, M.A. (2009). Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589-601. https://doi.org/10.1111/j.1365-313X.2009.03983.x
  68. Sun, J., Qi, L., Li, Y., Chu, J., and Li, C. (2012). PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth. PLoS Genet. 8, e1002594. https://doi.org/10.1371/journal.pgen.1002594
  69. Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I., Kudla, J., Nagy, F., Schafer, E., and Harter, K. (2001). Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling. Science 294, 1108-1111. https://doi.org/10.1126/science.1065022
  70. Van Buskirk, E.K., Reddy, A.K., Nagatani, A., and Chen, M. (2014). Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol. 165, 595-607. https://doi.org/10.1104/pp.114.236661
  71. Van Voorhies, W.A. and Ward, S. (1999). Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc. Natl. Acad. Sci. U. S. A. 96, 11399-11403. https://doi.org/10.1073/pnas.96.20.11399
  72. Vu, L.D., Gevaert, K., and De Smet, I. (2019). Feeling the heat: searching for plant thermosensors. Trends Plant Sci. 24, 210-219. https://doi.org/10.1016/j.tplants.2018.11.004
  73. Waalen, J. and Buxbaum, J.N. (2011). Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Biol. Sci. Med. Sci. 66, 487-492. https://doi.org/10.1093/gerona/glr001
  74. Zhang, B., Holmlund, M., Lorrain, S., Norberg, M., Bako, L., Fankhauser, C., and Nilsson, O. (2017). BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. Elife 6, e26759. https://doi.org/10.7554/elife.26759
  75. Zhou, Y., Xun, Q., Zhang, D., Lv, M., Ou, Y., and Li, J. (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15, 600-610. https://doi.org/10.1016/j.isci.2019.04.002

Cited by

  1. Characterization of Phytochrome-Interacting Factor Genes in Pepper and Functional Analysis of CaPIF8 in Cold and Salt Stress vol.12, 2020, https://doi.org/10.3389/fpls.2021.746517
  2. PHYTOCHROME INTERACTING FACTORS PIF4 and PIF5 promote heat stress induced leaf senescence in Arabidopsis vol.72, pp.12, 2021, https://doi.org/10.1093/jxb/erab158
  3. Phytochrome regulates cellular response plasticity and the basic molecular machinery of leaf development vol.186, pp.2, 2021, https://doi.org/10.1093/plphys/kiab112
  4. Hot topic: Thermosensing in plants vol.44, pp.7, 2021, https://doi.org/10.1111/pce.13979
  5. Arabidopsis WRKY71 regulates ethylene‐mediated leaf senescence by directly activating EIN2, ORE1 and ACS2 genes vol.107, pp.6, 2020, https://doi.org/10.1111/tpj.15433