References
- D. ter Haar, The Old Quantum Theory (Pergamon, Oxford, 1967).
- A. Einstein, Ann. Phys. 17, 132 (1905). https://doi.org/10.1002/andp.19053220607
- A. B. Arons and M. B. Peppard, Am. J. Phys. 33, 367 (1965). https://doi.org/10.1119/1.1971542
- A. H. Compton, Phys. Rev. 21, 483 (1923). https://doi.org/10.1103/PhysRev.21.483
- Clauser, John F. "Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effec" (1974).
- Brassard, G., Lutkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330-1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330
- Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794-798 (2013). https://doi.org/10.1126/science.1231440
- Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798-801 (2013). https://doi.org/10.1126/science.1231692
- Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615-620 (2014). https://doi.org/10.1038/nphoton.2014.135
- Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540-544 (2013). https://doi.org/10.1038/nphoton.2013.102
- Henrik Mantynen*, Nicklas Anttu, Zhipei Sun and Harri Lipsanen Nanophotonics 8(5) (2019).
- Pascale Senellart, Glenn Solomon and Andrew White, Nature Nanotechnology 12, 1026-1039 (2017). https://doi.org/10.1038/nnano.2017.218
-
D. Magde and H. Mahr, "Study in Ammonium Dihydrogen Phosphate of SpontaneousParametric Interaction Tunable from 4400 to 16 000 A," Phys. Rev. Lett. 18, 905-907 (1967).Chapter
$\mid$ 11 Parametric Down-Conversion 405. https://doi.org/10.1103/PhysRevLett.18.905 - S. A. Akhmanov, V. V. Fadeev, R. V. Khoklov, and O.N. Chunaev, Sov. Phys. JETP Lett. 6,85 (1967).
- R.L. Byer and S.E. Harris, "Power and Bandwidth of Spontaneous Parametric Emission," Phys. Rev. 168, 1064 (1968). https://doi.org/10.1103/PhysRev.168.1064
- D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Productionof Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970). https://doi.org/10.1103/PhysRevLett.25.84
- Y. H. Shih and C. O. Alley, "New Type of Einstein-Podolsky-Rosen-Bohm Experiment UsingPairs of Light Quanta Produced by Optical Parametric Down Conversion," Phys. Rev. Lett. 61, 2921-2924 (1988). https://doi.org/10.1103/PhysRevLett.61.2921
- R. Ghosh and L. Mandel, "Observation of Nonclassical Effects in the Interference of TwoPhotons," Phys. Rev. Lett. 59, 1903-1905 (1987). https://doi.org/10.1103/PhysRevLett.59.1903
- C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of Subpicosecond Time IntervalsBetween Two Photons by Interference," Phys. Rev. Lett. 59, 2044-2046 (1987). https://doi.org/10.1103/PhysRevLett.59.2044
- Dorilian L' opez Mago,,Implementation of a twophoton Michelson interferometer for Quantum-Optical Coherence Tomography 13, Instituto Tecnologico y de Estudios Superiores de Monterrey' Campus Monterrey May (2012).
- P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "NewHigh- Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75,4337-4341 (1995). https://doi.org/10.1103/PhysRevLett.75.4337
- F. Jelezko and J. Wrachtrup, physica status solidi (a) 203, 32073225 (2006).
- T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, R.G. Beausoleil, "Polarization-Selective Excitation of Nitrogen Vacancy Centers in Diamond," Phys. Rev. B 76, 165205 (2007). https://doi.org/10.1103/physrevb.76.165205
- Aharonovich, I., Englund, D. & Toth, M. Solidstate single-photon emitters. Nature Photon 10, 631-641 (2016). https://doi.org/10.1038/nphoton.2016.186
- Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282-2285 (2000). https://doi.org/10.1126/science.290.5500.2282
- Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87-90 (1996). https://doi.org/10.1126/science.273.5271.87
- Sebald, K. et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920-2922 (2002). https://doi.org/10.1063/1.1515364
- Couteau, C. et al. Correlated photon emission from a single II-VI quantum dot. Appl. Phys. Lett. 85, 6251-6253 (2004). https://doi.org/10.1063/1.1842370
- Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982-986 (2014). https://doi.org/10.1021/nl404400d
- J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature (London) 397, 500 (1999). https://doi.org/10.1038/17295
- M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011). https://doi.org/10.1063/1.3610677
- A. J. Shields, Nature Photon. 1, 215 (2007). https://doi.org/10.1038/nphoton.2007.46
- E. Moreau, I. Robert, J. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, Appl. Phys. Lett. 79, 2865 (2001). https://doi.org/10.1063/1.1415346
- M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002). https://doi.org/10.1103/PhysRevLett.89.233602
- A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. Krenner, R. Meyer, G. Bohm, and J. Finley, Phys. Rev. B 71, 241304(R) (2005). https://doi.org/10.1103/physrevb.71.241304
- S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 87, 163107(2005). https://doi.org/10.1063/1.2103397
- D. Press, S. Goetzinger, S. Reitzenstein, C. Hofmann, A. Loeffler, M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98, 117402 (2007). https://doi.org/10.1103/PhysRevLett.98.117402
- E. M. Purcell, Phys. Rev. 69, 681 (1946). https://doi.org/10.1103/PhysRev.69.37
- Huber, D., Reindl, M., Huo, Y. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun 8, 15506 (2017). https://doi.org/10.1038/ncomms15506
- V. Scarani et al., "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92(5), 057901 (2004). https://doi.org/10.1103/PhysRevLett.92.057901
- H. K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94(23), 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504
- B. Lounis and M. Orrit, Reports on Progress in Physics 68, 1129 (2005). https://doi.org/10.1088/0034-4885/68/5/R04
- A. N. Boto et al., Physical Review Letters 85, 2733 (2000). https://doi.org/10.1103/PhysRevLett.85.2733