양자광원 기술 연구 동향

  • 박석인 (한국과학기술연구원 광전소재연구단) ;
  • 송진동 (한국과학기술연구원 광전소재연구단)
  • Published : 2020.08.01

Abstract

Keywords

References

  1. D. ter Haar, The Old Quantum Theory (Pergamon, Oxford, 1967).
  2. A. Einstein, Ann. Phys. 17, 132 (1905). https://doi.org/10.1002/andp.19053220607
  3. A. B. Arons and M. B. Peppard, Am. J. Phys. 33, 367 (1965). https://doi.org/10.1119/1.1971542
  4. A. H. Compton, Phys. Rev. 21, 483 (1923). https://doi.org/10.1103/PhysRev.21.483
  5. Clauser, John F. "Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effec" (1974).
  6. Brassard, G., Lutkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330-1333 (2000). https://doi.org/10.1103/PhysRevLett.85.1330
  7. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794-798 (2013). https://doi.org/10.1126/science.1231440
  8. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798-801 (2013). https://doi.org/10.1126/science.1231692
  9. Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615-620 (2014). https://doi.org/10.1038/nphoton.2014.135
  10. Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540-544 (2013). https://doi.org/10.1038/nphoton.2013.102
  11. Henrik Mantynen*, Nicklas Anttu, Zhipei Sun and Harri Lipsanen Nanophotonics 8(5) (2019).
  12. Pascale Senellart, Glenn Solomon and Andrew White, Nature Nanotechnology 12, 1026-1039 (2017). https://doi.org/10.1038/nnano.2017.218
  13. D. Magde and H. Mahr, "Study in Ammonium Dihydrogen Phosphate of SpontaneousParametric Interaction Tunable from 4400 to 16 000 A," Phys. Rev. Lett. 18, 905-907 (1967).Chapter $\mid$ 11 Parametric Down-Conversion 405. https://doi.org/10.1103/PhysRevLett.18.905
  14. S. A. Akhmanov, V. V. Fadeev, R. V. Khoklov, and O.N. Chunaev, Sov. Phys. JETP Lett. 6,85 (1967).
  15. R.L. Byer and S.E. Harris, "Power and Bandwidth of Spontaneous Parametric Emission," Phys. Rev. 168, 1064 (1968). https://doi.org/10.1103/PhysRev.168.1064
  16. D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Productionof Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970). https://doi.org/10.1103/PhysRevLett.25.84
  17. Y. H. Shih and C. O. Alley, "New Type of Einstein-Podolsky-Rosen-Bohm Experiment UsingPairs of Light Quanta Produced by Optical Parametric Down Conversion," Phys. Rev. Lett. 61, 2921-2924 (1988). https://doi.org/10.1103/PhysRevLett.61.2921
  18. R. Ghosh and L. Mandel, "Observation of Nonclassical Effects in the Interference of TwoPhotons," Phys. Rev. Lett. 59, 1903-1905 (1987). https://doi.org/10.1103/PhysRevLett.59.1903
  19. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of Subpicosecond Time IntervalsBetween Two Photons by Interference," Phys. Rev. Lett. 59, 2044-2046 (1987). https://doi.org/10.1103/PhysRevLett.59.2044
  20. Dorilian L' opez Mago,,Implementation of a twophoton Michelson interferometer for Quantum-Optical Coherence Tomography 13, Instituto Tecnologico y de Estudios Superiores de Monterrey' Campus Monterrey May (2012).
  21. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "NewHigh- Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75,4337-4341 (1995). https://doi.org/10.1103/PhysRevLett.75.4337
  22. F. Jelezko and J. Wrachtrup, physica status solidi (a) 203, 32073225 (2006).
  23. T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, R.G. Beausoleil, "Polarization-Selective Excitation of Nitrogen Vacancy Centers in Diamond," Phys. Rev. B 76, 165205 (2007). https://doi.org/10.1103/physrevb.76.165205
  24. Aharonovich, I., Englund, D. & Toth, M. Solidstate single-photon emitters. Nature Photon 10, 631-641 (2016). https://doi.org/10.1038/nphoton.2016.186
  25. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282-2285 (2000). https://doi.org/10.1126/science.290.5500.2282
  26. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87-90 (1996). https://doi.org/10.1126/science.273.5271.87
  27. Sebald, K. et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920-2922 (2002). https://doi.org/10.1063/1.1515364
  28. Couteau, C. et al. Correlated photon emission from a single II-VI quantum dot. Appl. Phys. Lett. 85, 6251-6253 (2004). https://doi.org/10.1063/1.1842370
  29. Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982-986 (2014). https://doi.org/10.1021/nl404400d
  30. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature (London) 397, 500 (1999). https://doi.org/10.1038/17295
  31. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011). https://doi.org/10.1063/1.3610677
  32. A. J. Shields, Nature Photon. 1, 215 (2007). https://doi.org/10.1038/nphoton.2007.46
  33. E. Moreau, I. Robert, J. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, Appl. Phys. Lett. 79, 2865 (2001). https://doi.org/10.1063/1.1415346
  34. M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002). https://doi.org/10.1103/PhysRevLett.89.233602
  35. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. Krenner, R. Meyer, G. Bohm, and J. Finley, Phys. Rev. B 71, 241304(R) (2005). https://doi.org/10.1103/physrevb.71.241304
  36. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 87, 163107(2005). https://doi.org/10.1063/1.2103397
  37. D. Press, S. Goetzinger, S. Reitzenstein, C. Hofmann, A. Loeffler, M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98, 117402 (2007). https://doi.org/10.1103/PhysRevLett.98.117402
  38. E. M. Purcell, Phys. Rev. 69, 681 (1946). https://doi.org/10.1103/PhysRev.69.37
  39. Huber, D., Reindl, M., Huo, Y. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun 8, 15506 (2017). https://doi.org/10.1038/ncomms15506
  40. V. Scarani et al., "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92(5), 057901 (2004). https://doi.org/10.1103/PhysRevLett.92.057901
  41. H. K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94(23), 230504 (2005). https://doi.org/10.1103/PhysRevLett.94.230504
  42. B. Lounis and M. Orrit, Reports on Progress in Physics 68, 1129 (2005). https://doi.org/10.1088/0034-4885/68/5/R04
  43. A. N. Boto et al., Physical Review Letters 85, 2733 (2000). https://doi.org/10.1103/PhysRevLett.85.2733