References
- Cyranoski D (2019) The CRISPR-baby scandal: what's next for human gene-editing. Nature 566, 440-442 https://doi.org/10.1038/d41586-019-00673-1
- El-Mounadi K, Morales-Floriano ML and Garcia-Ruiz H (2020) Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Front Plant Sci 11, 56 https://doi.org/10.3389/fpls.2020.00056
- Lassoued R, Macall DM, Hesseln H, Phillips PWB and Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28, 247-256 https://doi.org/10.1007/s11248-019-00118-5
- Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234 https://doi.org/10.1038/317230a0
- Bollag RJ, Waldman AS and Liskay RM (1989) Homologous recombination in mammalian cells. Annu Rev Genet 23, 199-225 https://doi.org/10.1146/annurev.ge.23.120189.001215
- Vasquez KM, Marburger K, Intody Z and Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98, 8403-8410 https://doi.org/10.1073/pnas.111009698
- Bouabe H and Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064, 315-336 https://doi.org/10.1007/978-1-62703-601-6_23
- Rouet P, Smih F and Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91, 6064-6068 https://doi.org/10.1073/pnas.91.13.6064
- Chevalier BS and Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29, 3757-3774 https://doi.org/10.1093/nar/29.18.3757
- Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34, 4791-4800 https://doi.org/10.1093/nar/gkl645
- Seligman LM, Chisholm KM, Chevalier BS et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30, 3870-3879 https://doi.org/10.1093/nar/gkf495
- Sussman D, Chadsey M, Fauce S et al (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342, 31-41 https://doi.org/10.1016/j.jmb.2004.07.031
- Li L, Wu LP and Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A 89, 4275-4279 https://doi.org/10.1073/pnas.89.10.4275
- Choo Y and Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 91, 11168-11172 https://doi.org/10.1073/pnas.91.23.11168
- Kim YG, Cha J and Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93, 1156-1160 https://doi.org/10.1073/pnas.93.3.1156
- Kim YG, Shi Y, Berg JM and Chandrasegaran S (1997) Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203, 43-49 https://doi.org/10.1016/S0378-1119(97)00489-7
- Bibikova M, Beumer K, Trautman JK and Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 https://doi.org/10.1126/science.1079512
- Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646 https://doi.org/10.1038/nrg2842
- Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512 https://doi.org/10.1126/science.1178811
- Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761 https://doi.org/10.1534/genetics.110.120717
- Mojica FJ, Diez-Villasenor C, Soria E and Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36, 244-246 https://doi.org/10.1046/j.1365-2958.2000.01838.x
- Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433 https://doi.org/10.1128/jb.169.12.5429-5433.1987
- Jansen R, Embden JD, Gaastra W and Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575 https://doi.org/10.1046/j.1365-2958.2002.02839.x
- Mojica FJ, Juez G and Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9, 613-621 https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
- Bolotin A, Quinquis B, Sorokin A and Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561 https://doi.org/10.1099/mic.0.28048-0
- Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182 https://doi.org/10.1007/s00239-004-0046-3
- Pourcel C, Salvignol G and Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663 https://doi.org/10.1099/mic.0.27437-0
- Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
- Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964 https://doi.org/10.1126/science.1159689
- Sorek R, Kunin V and Hugenholtz P (2008) CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6, 181-186 https://doi.org/10.1038/nrmicro1793
- Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845 https://doi.org/10.1126/science.1165771
- Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400 https://doi.org/10.1128/JB.01412-07
- Horvath P, Romero DA, Coute-Monvoisin AC et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401-1412 https://doi.org/10.1128/JB.01415-07
- Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71 https://doi.org/10.1038/nature09523
- Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 https://doi.org/10.1038/nature09886
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
- Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10, 841-851 https://doi.org/10.4161/rna.24203
- Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-9282 https://doi.org/10.1093/nar/gkr606
- Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586 https://doi.org/10.1073/pnas.1208507109
- Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
- Jinek M, East A, Cheng A, Lin S, Ma E and Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2, e00471 https://doi.org/10.7554/elife.00471
- Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
- Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 https://doi.org/10.1038/nbt.2507
- Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24, 132-141 https://doi.org/10.1101/gr.162339.113
- Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
- Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832 https://doi.org/10.1038/nbt.2647
- Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838 https://doi.org/10.1038/nbt.2675
- Koonin EV, Makarova KS and Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37, 67-78 https://doi.org/10.1016/j.mib.2017.05.008
- Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
- Kuscu C, Arslan S, Singh R, Thorpe J and Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683 https://doi.org/10.1038/nbt.2916
- Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670-676 https://doi.org/10.1038/nbt.2889
- Singh R, Kuscu C, Quinlan A, Qi Y and Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43, e118 https://doi.org/10.1093/nar/gkv575
- Cencic R, Miura H, Malina A et al (2014) Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9, e109213 https://doi.org/10.1371/journal.pone.0109213
- Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019 https://doi.org/10.1101/gr.171322.113
- Pickar-Oliver A and Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507 https://doi.org/10.1038/s41580-019-0131-5
- Cebrian-Serrano A and Davies B (2017) CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28, 247-261 https://doi.org/10.1007/s00335-017-9697-4
- Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 164, 29-44 https://doi.org/10.1016/j.cell.2015.12.035
- Makarova KS, Wolf YI and Koonin EV (2018) Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J 1, 325-336 https://doi.org/10.1089/crispr.2018.0033
- Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 https://doi.org/10.1016/j.cell.2015.09.038
- Paul B and Montoya G (2020) CRISPR-Cas12a: Functional overview and applications. Biomed J 43, 8-17 https://doi.org/10.1016/j.bj.2019.10.005
- Kim Y, Cheong SA, Lee JG et al (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34, 808-810 https://doi.org/10.1038/nbt.3614
- Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736 https://doi.org/10.1038/nrmicro3569
- Wang Y, Wang M, Zheng T et al (2020) Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci Rep 10, 1-8 https://doi.org/10.1038/s41598-019-56847-4
- Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788 https://doi.org/10.1038/s41576-018-0059-1
- Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
- Grunewald J, Zhou R, Garcia SP et al (2019) Transcriptome-wide off-target RNA editing induced by CRISPRguided DNA base editors. Nature 569, 433-437 https://doi.org/10.1038/s41586-019-1161-z
- Grunewald J, Zhou R, Iyer S et al (2019) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37, 1041-1048 https://doi.org/10.1038/s41587-019-0236-6
- Wang T, Wei JJ, Sabatini DM and Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84 https://doi.org/10.1126/science.1246981
- Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32, 1262-1267 https://doi.org/10.1038/nbt.3026
- Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186 https://doi.org/10.1371/journal.pone.0098186
- Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264 https://doi.org/10.1038/mtna.2015.37
- Carroll D (2019) Collateral damage: benchmarking off-target effects in genome editing. Genome Biol 20, 114 https://doi.org/10.1186/s13059-019-1725-0
- Mirzazadeh R, Kallas T, Bienko M and Crosetto N (2018) Genome-wide profiling of DNA double-strand breaks by the BLESS and BLISS methods. Methods Mol Biol 1672, 167-194 https://doi.org/10.1007/978-1-4939-7306-4_14
- Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197 https://doi.org/10.1038/nbt.3117
- Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243, 231 p following 243 https://doi.org/10.1038/nmeth.3284
- Zhu Y, Biernacka A, Pardo B et al (2019) qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nat Commun 10, 1-11 https://doi.org/10.1038/s41467-018-07882-8
- Wienert B, Wyman SK, Yeh CD, Conklin BR and Corn JE (2020) CRISPR off-target detection with DISCOVER-seq. Nat Protoc 15, 1775-1799 https://doi.org/10.1038/s41596-020-0309-5
- Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211 https://doi.org/10.1146/annurev.biochem.052308.093131
- Nambiar TS, Billon P, Diedenhofen G et al (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun 10, 3395 https://doi.org/10.1038/s41467-019-11105-z
- Brogna S and Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16, 107-113 https://doi.org/10.1038/nsmb.1550
- Popp MW and Maquat LE (2016) Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165, 1319-1322 https://doi.org/10.1016/j.cell.2016.05.053
- Tuladhar R, Yeu Y, Tyler Piazza J et al (2019) CRISPRCas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 10, 4056 https://doi.org/10.1038/s41467-019-12028-5
- Winter J, Luu A, Gapinske M et al (2019) Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov 5, 1-12 https://doi.org/10.1038/s41421-018-0068-4
- Mou H, Smith JL, Peng L et al (2017) CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18, 1-8 https://doi.org/10.1186/s13059-016-1139-1
- Chen D, Tang JX, Li B, Hou L, Wang X and Kang L (2018) CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol 18, 1-9
- Sui T, Song Y, Liu Z et al (2018) CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biol 19, 164 https://doi.org/10.1186/s13059-018-1532-z