DOI QR코드

DOI QR Code

Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity

  • Shin, Juhyun (Department of Stem Cell and Regenerative Biotechnology, Konkuk University) ;
  • Oh, Jae-Wook (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
  • Received : 2020.03.31
  • Published : 2020.07.31

Abstract

The targeted nuclease clustered, regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR/Cas) system has recently emerged as a prominent gene manipulation method. Because of its ease in programming targeted DNA/protein binding through RNA in a vast range of organisms, this prokaryotic defense system is a versatile tool with many applications in the research field as well as high potential in agricultural and clinical improvements. This review will present a brief history that led to its discovery and adaptation. We also present some of its restrictions, and modifications that have been performed to overcome such restrictions, focusing specifically on the most common CRISPR/Cas9 mediated non-homologous end joint repair.

Keywords

References

  1. Cyranoski D (2019) The CRISPR-baby scandal: what's next for human gene-editing. Nature 566, 440-442 https://doi.org/10.1038/d41586-019-00673-1
  2. El-Mounadi K, Morales-Floriano ML and Garcia-Ruiz H (2020) Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Front Plant Sci 11, 56 https://doi.org/10.3389/fpls.2020.00056
  3. Lassoued R, Macall DM, Hesseln H, Phillips PWB and Smyth SJ (2019) Benefits of genome-edited crops: expert opinion. Transgenic Res 28, 247-256 https://doi.org/10.1007/s11248-019-00118-5
  4. Smithies O, Gregg RG, Boggs SS, Koralewski MA and Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234 https://doi.org/10.1038/317230a0
  5. Bollag RJ, Waldman AS and Liskay RM (1989) Homologous recombination in mammalian cells. Annu Rev Genet 23, 199-225 https://doi.org/10.1146/annurev.ge.23.120189.001215
  6. Vasquez KM, Marburger K, Intody Z and Wilson JH (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci U S A 98, 8403-8410 https://doi.org/10.1073/pnas.111009698
  7. Bouabe H and Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064, 315-336 https://doi.org/10.1007/978-1-62703-601-6_23
  8. Rouet P, Smih F and Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91, 6064-6068 https://doi.org/10.1073/pnas.91.13.6064
  9. Chevalier BS and Stoddard BL (2001) Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res 29, 3757-3774 https://doi.org/10.1093/nar/29.18.3757
  10. Rosen LE, Morrison HA, Masri S et al (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34, 4791-4800 https://doi.org/10.1093/nar/gkl645
  11. Seligman LM, Chisholm KM, Chevalier BS et al (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30, 3870-3879 https://doi.org/10.1093/nar/gkf495
  12. Sussman D, Chadsey M, Fauce S et al (2004) Isolation and characterization of new homing endonuclease specificities at individual target site positions. J Mol Biol 342, 31-41 https://doi.org/10.1016/j.jmb.2004.07.031
  13. Li L, Wu LP and Chandrasegaran S (1992) Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A 89, 4275-4279 https://doi.org/10.1073/pnas.89.10.4275
  14. Choo Y and Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 91, 11168-11172 https://doi.org/10.1073/pnas.91.23.11168
  15. Kim YG, Cha J and Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93, 1156-1160 https://doi.org/10.1073/pnas.93.3.1156
  16. Kim YG, Shi Y, Berg JM and Chandrasegaran S (1997) Site-specific cleavage of DNA-RNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203, 43-49 https://doi.org/10.1016/S0378-1119(97)00489-7
  17. Bibikova M, Beumer K, Trautman JK and Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 https://doi.org/10.1126/science.1079512
  18. Urnov FD, Rebar EJ, Holmes MC, Zhang HS and Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646 https://doi.org/10.1038/nrg2842
  19. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512 https://doi.org/10.1126/science.1178811
  20. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761 https://doi.org/10.1534/genetics.110.120717
  21. Mojica FJ, Diez-Villasenor C, Soria E and Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36, 244-246 https://doi.org/10.1046/j.1365-2958.2000.01838.x
  22. Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433 https://doi.org/10.1128/jb.169.12.5429-5433.1987
  23. Jansen R, Embden JD, Gaastra W and Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575 https://doi.org/10.1046/j.1365-2958.2002.02839.x
  24. Mojica FJ, Juez G and Rodriguez-Valera F (1993) Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol 9, 613-621 https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
  25. Bolotin A, Quinquis B, Sorokin A and Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561 https://doi.org/10.1099/mic.0.28048-0
  26. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182 https://doi.org/10.1007/s00239-004-0046-3
  27. Pourcel C, Salvignol G and Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653-663 https://doi.org/10.1099/mic.0.27437-0
  28. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
  29. Brouns SJ, Jore MM, Lundgren M et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964 https://doi.org/10.1126/science.1159689
  30. Sorek R, Kunin V and Hugenholtz P (2008) CRISPR--a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6, 181-186 https://doi.org/10.1038/nrmicro1793
  31. Marraffini LA and Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843-1845 https://doi.org/10.1126/science.1165771
  32. Deveau H, Barrangou R, Garneau JE et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400 https://doi.org/10.1128/JB.01412-07
  33. Horvath P, Romero DA, Coute-Monvoisin AC et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401-1412 https://doi.org/10.1128/JB.01415-07
  34. Garneau JE, Dupuis ME, Villion M et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67-71 https://doi.org/10.1038/nature09523
  35. Deltcheva E, Chylinski K, Sharma CM et al (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607 https://doi.org/10.1038/nature09886
  36. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  37. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P and Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10, 841-851 https://doi.org/10.4161/rna.24203
  38. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P and Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39, 9275-9282 https://doi.org/10.1093/nar/gkr606
  39. Gasiunas G, Barrangou R, Horvath P and Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586 https://doi.org/10.1073/pnas.1208507109
  40. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 https://doi.org/10.1126/science.1231143
  41. Jinek M, East A, Cheng A, Lin S, Ma E and Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2, e00471 https://doi.org/10.7554/elife.00471
  42. Mali P, Yang L, Esvelt KM et al (2013) RNA-guided human genome engineering via Cas9. Science 339, 823-826 https://doi.org/10.1126/science.1232033
  43. Cho SW, Kim S, Kim JM and Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232 https://doi.org/10.1038/nbt.2507
  44. Cho SW, Kim S, Kim Y et al (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24, 132-141 https://doi.org/10.1101/gr.162339.113
  45. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826 https://doi.org/10.1038/nbt.2623
  46. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832 https://doi.org/10.1038/nbt.2647
  47. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838 https://doi.org/10.1038/nbt.2675
  48. Koonin EV, Makarova KS and Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37, 67-78 https://doi.org/10.1016/j.mib.2017.05.008
  49. Anders C, Niewoehner O, Duerst A and Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569-573 https://doi.org/10.1038/nature13579
  50. Kuscu C, Arslan S, Singh R, Thorpe J and Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32, 677-683 https://doi.org/10.1038/nbt.2916
  51. Wu X, Scott DA, Kriz AJ et al (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32, 670-676 https://doi.org/10.1038/nbt.2889
  52. Singh R, Kuscu C, Quinlan A, Qi Y and Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43, e118 https://doi.org/10.1093/nar/gkv575
  53. Cencic R, Miura H, Malina A et al (2014) Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS One 9, e109213 https://doi.org/10.1371/journal.pone.0109213
  54. Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019 https://doi.org/10.1101/gr.171322.113
  55. Pickar-Oliver A and Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507 https://doi.org/10.1038/s41580-019-0131-5
  56. Cebrian-Serrano A and Davies B (2017) CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mamm Genome 28, 247-261 https://doi.org/10.1007/s00335-017-9697-4
  57. Wright AV, Nunez JK and Doudna JA (2016) Biology and applications of CRISPR systems: Harnessing Nature's Toolbox for Genome Engineering. Cell 164, 29-44 https://doi.org/10.1016/j.cell.2015.12.035
  58. Makarova KS, Wolf YI and Koonin EV (2018) Classification and nomenclature of CRISPR-Cas systems: where from here? CRISPR J 1, 325-336 https://doi.org/10.1089/crispr.2018.0033
  59. Zetsche B, Gootenberg JS, Abudayyeh OO et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 https://doi.org/10.1016/j.cell.2015.09.038
  60. Paul B and Montoya G (2020) CRISPR-Cas12a: Functional overview and applications. Biomed J 43, 8-17 https://doi.org/10.1016/j.bj.2019.10.005
  61. Kim Y, Cheong SA, Lee JG et al (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34, 808-810 https://doi.org/10.1038/nbt.3614
  62. Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736 https://doi.org/10.1038/nrmicro3569
  63. Wang Y, Wang M, Zheng T et al (2020) Specificity profiling of CRISPR system reveals greatly enhanced off-target gene editing. Sci Rep 10, 1-8 https://doi.org/10.1038/s41598-019-56847-4
  64. Rees HA and Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19, 770-788 https://doi.org/10.1038/s41576-018-0059-1
  65. Anzalone AV, Randolph PB, Davis JR et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157 https://doi.org/10.1038/s41586-019-1711-4
  66. Grunewald J, Zhou R, Garcia SP et al (2019) Transcriptome-wide off-target RNA editing induced by CRISPRguided DNA base editors. Nature 569, 433-437 https://doi.org/10.1038/s41586-019-1161-z
  67. Grunewald J, Zhou R, Iyer S et al (2019) CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat Biotechnol 37, 1041-1048 https://doi.org/10.1038/s41587-019-0236-6
  68. Wang T, Wei JJ, Sabatini DM and Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84 https://doi.org/10.1126/science.1246981
  69. Doench JG, Hartenian E, Graham DB et al (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32, 1262-1267 https://doi.org/10.1038/nbt.3026
  70. Gagnon JA, Valen E, Thyme SB et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186 https://doi.org/10.1371/journal.pone.0098186
  71. Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4, e264 https://doi.org/10.1038/mtna.2015.37
  72. Carroll D (2019) Collateral damage: benchmarking off-target effects in genome editing. Genome Biol 20, 114 https://doi.org/10.1186/s13059-019-1725-0
  73. Mirzazadeh R, Kallas T, Bienko M and Crosetto N (2018) Genome-wide profiling of DNA double-strand breaks by the BLESS and BLISS methods. Methods Mol Biol 1672, 167-194 https://doi.org/10.1007/978-1-4939-7306-4_14
  74. Tsai SQ, Zheng Z, Nguyen NT et al (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33, 187-197 https://doi.org/10.1038/nbt.3117
  75. Kim D, Bae S, Park J et al (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12, 237-243, 231 p following 243 https://doi.org/10.1038/nmeth.3284
  76. Zhu Y, Biernacka A, Pardo B et al (2019) qDSB-Seq is a general method for genome-wide quantification of DNA double-strand breaks using sequencing. Nat Commun 10, 1-11 https://doi.org/10.1038/s41467-018-07882-8
  77. Wienert B, Wyman SK, Yeh CD, Conklin BR and Corn JE (2020) CRISPR off-target detection with DISCOVER-seq. Nat Protoc 15, 1775-1799 https://doi.org/10.1038/s41596-020-0309-5
  78. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79, 181-211 https://doi.org/10.1146/annurev.biochem.052308.093131
  79. Nambiar TS, Billon P, Diedenhofen G et al (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun 10, 3395 https://doi.org/10.1038/s41467-019-11105-z
  80. Brogna S and Wen J (2009) Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16, 107-113 https://doi.org/10.1038/nsmb.1550
  81. Popp MW and Maquat LE (2016) Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165, 1319-1322 https://doi.org/10.1016/j.cell.2016.05.053
  82. Tuladhar R, Yeu Y, Tyler Piazza J et al (2019) CRISPRCas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun 10, 4056 https://doi.org/10.1038/s41467-019-12028-5
  83. Winter J, Luu A, Gapinske M et al (2019) Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov 5, 1-12 https://doi.org/10.1038/s41421-018-0068-4
  84. Mou H, Smith JL, Peng L et al (2017) CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol 18, 1-8 https://doi.org/10.1186/s13059-016-1139-1
  85. Chen D, Tang JX, Li B, Hou L, Wang X and Kang L (2018) CRISPR/Cas9-mediated genome editing induces exon skipping by complete or stochastic altering splicing in the migratory locust. BMC Biotechnol 18, 1-9
  86. Sui T, Song Y, Liu Z et al (2018) CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biol 19, 164 https://doi.org/10.1186/s13059-018-1532-z