References
- Holloway, S., "Underground Sequestration of Carbon Dioxide-a Viable Greenhouse Gas Mitigation Option," Energy, 30(11-12), 2318-2333(2005). https://doi.org/10.1016/j.energy.2003.10.023
- Sims, R. E., "Renewable Energy: a Response to Climate Change," Sol. Energy, 76(1-3), 9-17(2004). https://doi.org/10.1016/S0038-092X(03)00101-4
- Han, J. H., Ahn, Y. C., Lee, J. U., and Lee, I. B., "Optimal Strategy for Carbon Capture and Storage Infrastructure: A Review," Korean J. Chem. Eng., 29(8), 975-984(2012). https://doi.org/10.1007/s11814-012-0083-3
- de Gorter, H. and Y. Tsur, "Cost-benefit Tests for GHG Emissions from Biofuel Production," Eur. Rev. Agric. Econ., 37(2), 133-145 (2010). https://doi.org/10.1093/erae/jbq014
- Kauffman, N., Hayes, D. and Brown, R., "A Life Cycle Assessment of Advanced Biofuel Production from a Hectare of Corn," Fuel, 90(11), 3306-3314(2011). https://doi.org/10.1016/j.fuel.2011.06.031
- Zabaniotou, A. and Andreou, K., "Development of Alternative Energy Sources for GHG Emissions Reduction in the Textile Industry by Energy Recovery from Cotton Ginning Waste," J. Clean Prod., 18(8), 784-790(2010). https://doi.org/10.1016/j.jclepro.2010.01.006
- Chakraborty, S., Aggarwal, V., Mukherjee, D. and Andras, K., "Biomass to Biofuel: a Review on Production Technology," Asia-Pac. J. Chem. Eng., 7, S254-S262(2012). https://doi.org/10.1002/apj.1642
- Ho, D. P., Ngo, H. H. and Guo, W., "A Mini Review on Renewable Sources for Biofuel," Bioresour. Technol., 169, 742-749(2014). https://doi.org/10.1016/j.biortech.2014.07.022
- Vassilev, S.V. and Vassileva, C. G., "Composition, Properties and Challenges of Algae Biomass for Biofuel Application: An Overview," Fuel, 181, 1-33(2016). https://doi.org/10.1016/j.fuel.2016.04.106
- Alam, F., Mobin, S. and Chowdhury, H., "Third Generation Biofuel from Algae," Procedia Eng., 105, 763-768(2015). https://doi.org/10.1016/j.proeng.2015.05.068
- Alam, M. A., Wang, Z. and Yuan, Z., "Generation and Harvesting of Microalgae Biomass for Biofuel Production, in Prospects and Challenges in Algal Biotechnology," 2017, Springer. p. 89-111.
- Shemfe, M. B., Gu, S. and Ranganathan, P., "Techno-economic Performance Analysis of Biofuel Production and Miniature Electric Power Generation from Biomass Fast Pyrolysis and Bio-oil Upgrading," Fuel, 143, 361-372(2015). https://doi.org/10.1016/j.fuel.2014.11.078
- Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A. and Kothandaraman, G., "Techno-economic Comparison of Biomass-to-transportation Fuels Via Pyrolysis, Gasification, and Biochemical Pathways," Fuel, 89, S29-S35(2010). https://doi.org/10.1016/j.fuel.2010.07.015
- Han, J., Luterbacher, J.S., Alonso, D.M., Dumesic, J.A. and Maravelias, C.T., "A lignoCellulosic Ethanol Strategy via Nonenzymatic Sugar Production: Process Synthesis and Analysis," Bioresour. Technol., 182, 258-266(2015). https://doi.org/10.1016/j.biortech.2015.01.135
- Han, J., Sen, S. M., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "Process Systems Engineering Studies for the Synthesis of Catalytic Biomass-to-fuels Strategies," Comput. Chem. Eng., 81, 57-69(2015). https://doi.org/10.1016/j.compchemeng.2015.04.007
- Byun, J. and Han, J., "Catalytic Production of Biofuels (butene oligomers) and Biochemicals (tetrahydrofurfuryl alcohol) from Corn Stover," Bioresour. Technol., 211, 360-366(2016). https://doi.org/10.1016/j.biortech.2016.03.123
- Byun, J. and Han, J., "An Integrated Strategy for Catalytic Co-Production of Jet Fuel Range Alkenes, Tetrahydrofurfuryl Alcohol, and 1, 2-pentanediol from Lignocellulosic Biomass," Green Chem., 19(21), 5214-5229(2017). https://doi.org/10.1039/C7GC02368E
- Davis, R., Aden, A. and Pienkos, P. T., "Techno-economic Analysis of Autotrophic Microalgae for Fuel Production," Appl. Energy, 88(10), 3524-3531(2011). https://doi.org/10.1016/j.apenergy.2011.04.018
- Byun, J., Ahn, Y., Kim, J., Kim, J. R., Jeong, S. Y., Kim, B. S., Kim, H. J. and Han, J., "Integrated Process for Electrocatalytic Conversion of Glycerol to Chemicals and Catalytic Conversion of Corn Stover to Fuels," Energy Conv. Manag., 163, 180-186(2018). https://doi.org/10.1016/j.enconman.2018.02.059
- An, H., Wilhelm, W. E. and Searcy, S. W., "Biofuel and Petroleum-based Fuel Supply Chain Research: a Literature Review," Biomass Bioenerg., 35(9), 3763-3774(2011). https://doi.org/10.1016/j.biombioe.2011.06.021
- Ahn, Y. C., Lee, I. B., Lee, K. H. and Han, J. H., "Strategic Planning Design of Microalgae Biomass-to-biodiesel Supply Chain Network: Multi-period Deterministic Model," Appl. Energy., 154, 528-542(2015). https://doi.org/10.1016/j.apenergy.2015.05.047
- Delrue, F., Li-Beisson, Y., Setier, P. A., Sahut, C., Roubaud, A., Froment, A. K. and Peltier, G., "Comparison of Various Microalgae Liquid Biofuel Production Pathways Based on Energetic, Economic and Environmental Criteria," Bioresour. Technol., 136, 205-212 (2013). https://doi.org/10.1016/j.biortech.2013.02.091
- Batan, L. Y., Graff, G. D. and Bradley, T. H., "Techno-economic and Monte Carlo Probabilistic Analysis of Microalgae Biofuel Production System," Bioresour. Technol., 219, 45-52(2016). https://doi.org/10.1016/j.biortech.2016.07.085
- Thilakaratne, R., Wright, M. M. and Brown, R. C., "A Technoeconomic Analysis of Microalgae Remnant Catalytic Pyrolysis and Upgrading to Fuels," Fuel, 128, 104-112(2014). https://doi.org/10.1016/j.fuel.2014.02.077
- Dutta, S., Neto, F. and Coelho, M. C., "Microalgae Biofuels: A Comparative Study on Techno-economic Analysis & Life-cycle Assessment," Algal Res., 20, 44-52(2016). https://doi.org/10.1016/j.algal.2016.09.018
- Xin, C., Addy, M. M., Zhao, J., Cheng, Y., Cheng, S., Mu, D., Liu, Y., Ding, R., Chen, P. and Ruan, R., "Comprehensive Technoeconomic Analysis of Wastewater-based Algal Biofuel Production: a Case Study," Bioresour. Technol., 211, 584-593(2016). https://doi.org/10.1016/j.biortech.2016.03.102
- Ou, L., Thilakaratne, R., Brown, R. C. and Wright, M. M., "Technoeconomic Analysis of Transportation Fuels from Defatted Microalgae via Hydrothermal Liquefaction and Hydroprocessing," Biomass Bioenerg., 72, 45-54(2015). https://doi.org/10.1016/j.biombioe.2014.11.018
- Kim, S. H., Yoon, S. G., Chae, S. H. and Park, S., "Economic and Environmental Optimization of a Multi-site Utility Network For an Industrial Complex," J. Environ. Manage., 91(3), 690-705 (2010). https://doi.org/10.1016/j.jenvman.2009.09.033
- Vuarnoz, D., Kitanovski, A., Gonin, C., Borgeaud, Y., Delessert, M., Meinen, M. and Egolf, P. W., "Quantitative Feasibility Study of Magnetocaloric Energy Conversion Utilizing Industrial Waste Heat," Appl. Energy, 100, 229-237(2012). https://doi.org/10.1016/j.apenergy.2012.04.051
- Rudberg, M., Waldemarsson, M. and Lidestam, H., "Strategic Perspectives on Energy Management: A Case Study in the Process Industry," Appl. Energy, 104, 487-496(2013). https://doi.org/10.1016/j.apenergy.2012.11.027
-
Han, J.-H., Ahn, Y.-C. and Lee, I.-B., "A Multi-objective Optimization Model for Sustainable Electricity Generation and
$CO_{2}$ Mitigation (EGCM) Infrastructure Design Considering Economic Profit and Financial Risk," Appl. Energy, 95, 186-195(2012). https://doi.org/10.1016/j.apenergy.2012.02.032 -
Han, J.-H. and Lee, I.-B., "A Systematic Process Integration Framework for the Optimal Design and Techno-economic Performance Analysis of Energy Supply and
$CO_2$ Mitigation Strategies," Appl. Energy, 125, 136-146(2014). https://doi.org/10.1016/j.apenergy.2014.03.057 - Huang, Y., Chen, C.-W. and Fan, Y., "Multistage Optimization of the Supply Chains of Biofuels," Transp. Res. Pt. e-Logist. Transp. Rev., 46(6), 820-830(2010). https://doi.org/10.1016/j.tre.2010.03.002
- Sharifzadeh, M., Garcia, M. C. and Shah, N., "Supply Chain Network Design and Operation: Systematic Decision-making for Centralized, Distributed, and Mobile Biofuel Production Using Mixed Integer Linear Programming (MILP) Under Uncertainty," Biomass Bioenerg., 81, 401-414(2015). https://doi.org/10.1016/j.biombioe.2015.07.026
- Lim, M. K. and Ouyang, Y., "Biofuel Supply Chain Network Design and Operations, in Environmentally Responsible Supply Chains," Springer. p. 143-162(2016).
- Kim, J., Realff, M. J., Lee, J. H., Whittaker, C. and Furtner, L., "Design of Biomass Processing Network for Biofuel Production Using an MILP Model," Biomass Bioenerg., 35(2), 853-871(2011). https://doi.org/10.1016/j.biombioe.2010.11.008
- Yu, J., Lee, I. B., Han, J. and Ahn, Y., "Stochastic Approach to Optimize the Supply Chain Network of Microalga-Derived Biodiesel under Uncertain Diesel Demand," J. Chem. Eng. Jpn., 53(1), 24-35( 2020). https://doi.org/10.1252/jcej.19we110
-
Kim, J., Johnson, T. A., Miller, J. E., Stechel, E. B. and Maravelias, C. T., "Fuel Production from
$CO_2$ Using Solar-thermal Energy: System Level Analysis," Energy Environ. Sci., 5(9), 8417-8429(2012). https://doi.org/10.1039/c2ee21798h - Kim, J., Lee, Y. and Moon, I., "Optimization of a Hydrogen Supply Chain Under Demand Uncertainty," Int. J. Hydrog. Energy, 33(18), 4715-4729(2008). https://doi.org/10.1016/j.ijhydene.2008.06.007