DOI QR코드

DOI QR Code

Optimization of Microalgae-Based Biodiesel Supply Chain Network Under the Uncertainty in Supplying Carbon Dioxide

이산화탄소 원료 공급의 불확실성을 고려한 미세조류 기반 바이오 디젤 공급 네트워크 최적화

  • Ahn, Yuchan (Green Materials & Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Junghwan (Green Materials & Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Han, Jeehoon (School of Semiconductor and Chemical Engineering, Jeonbuk National University)
  • 안유찬 (한국생산기술연구원 친환경재료공정그룹) ;
  • 김정환 (한국생산기술연구원 친환경재료공정그룹) ;
  • 한지훈 (전북대학교 반도체.화학공학부)
  • Received : 2020.03.07
  • Accepted : 2020.04.07
  • Published : 2020.08.01

Abstract

As fossil fuels are depleted worldwide, alternative resources is required to replace fossil fuels, and biofuels are in the spotlight as alternative resources. Biofuels are produced from biomass, which is a renewable resource to produce biofuels or bio-chemicals. Especially, in order to substitute fossil fuels, the research focusing the biofuel (biodiesel) production based on CO2 and biomass achieves more attention recently. To produce biomass-based biodiesel, the development of a supply chain network is required considering the amounts of feedstocks (ex, CO2 and water) required producing biodiesel, potential locations and capacities of bio-refineries, and transportations of biodiesel produced at biorefineries to demand cities. Although many studies of the biomass-based biodiesel supply chain network are performed, there are few types of research handled the uncertainty in CO2 supply which influences the optimal strategies of microalgae-based biodiesel production. Because CO2, which is used in the production of microalgae-based biodiesel as one of important resources, is captured from the off-gases emitted in power plants, the uncertainty in CO2 supply from power plants has big impacts on the optimal configuration of the biodiesel supply chain network. Therefore, in this study, to handle those issues, we develop the two-stage stochastic model to determine the optimal strategies of the biodiesel supply chain network considering the uncertainty in CO2 supply. The goal of the proposed model is to minimize the expected total cost of the biodiesel supply chain network considering the uncertain CO2 supply as well as satisfy diesel demands at each city. This model conducted a case study satisfying 10% diesel demand in the Republic of Korea. The overall cost of the stochastic model (US$ 12.9/gallon·y) is slightly higher (23%) than that of the deterministic model (US$ 10.5/gallon·y). Fluctuations in CO2 supply (stochastic model) had a significant impact on the optimal strategies of the biodiesel supply network.

전세계적으로 화석 연료가 고갈 되면서 화석 연료를 대체할 수 있는 자원이 필요한 실정이며, 대체 자원으로는 바이오 연료가 각광을 받고 있다. 바이오 연료는 바이오 매스로부터 생산되는데 바이오 매스는 바이오 연료 및 바이오 화학제품 생산이 가능한 재생 가능 자원이다. 특히, 화석 연료를 대체하기 위하여 이산화탄소와 바이오 매스를 이용하여 바이오 연료(바이오 디젤)를 생산하는 연구가 주목을 받고 있다. 바이오 매스를 기반으로 하여 바이오 디젤을 생산하기 위해서는 바이오 디젤 생산에 필요한 원료(예, 이산화탄소, 물)와 잠재적인 바이오 매스 리파이너리 용량 및 설치 위치, 생산된 바이오 디젤의 수요 도시까지의 공급을 모두 고려하는 공급 네트워크 개발이 필요하다. 바이오 매스를 이용한 바이오 디젤 공급 네트워크에 대하여 많은 연구가 수행이 되었지만, 미세조류 기반 최적의 바이오 디젤 생산 전략에 상당히 영향이 있는 이산화탄소 공급량에 대한 불확실성을 고려한 연구는 거의 수행되지 않았다. 미세조류 기반 바이오 디젤을 생산 시 상당히 중요한 원료로 이용되는 이산화탄소는 화력발전소에서 발생하는 배출 가스로부터 포집하여 사용하기 때문에 이산화탄소 공급량의 불확실성은 최적의 바이오 디젤 네트워크를 구축하는데 큰 영향이 있다. 따라서, 본 연구에서는 이산화탄소 공급량의 불확실성을 고려하는 최적 공급 네트워크 설계를 결정하기 위해 2단계 확률 모델을 개발한다. 이 모델의 목표는 이산화탄소 공급량 불확실성을 고려하고 각 지역의 디젤 요구량을 충족시키면서 총 네트워크 비용을 결정하는 것이다. 이 모델은 대한민국의 디젤 수요량의 10%를 충족시키는 사례 연구를 평가하였다. 확률론적 모델(연간 갤런당 12.9 미국 달러)에 의해 결정된 최적의 바이오 디젤 공급 비용은 결정론적 모델(연간 갤런당 10.5 미국달러)의 결과보다 약간(26%) 높다. 이산화탄소 공급량이 변동되는 경우(확률론적 모델)는 바이오 디젤 공급 네트워크 전략에 상당한 영향을 미쳤다.

Keywords

References

  1. Holloway, S., "Underground Sequestration of Carbon Dioxide-a Viable Greenhouse Gas Mitigation Option," Energy, 30(11-12), 2318-2333(2005). https://doi.org/10.1016/j.energy.2003.10.023
  2. Sims, R. E., "Renewable Energy: a Response to Climate Change," Sol. Energy, 76(1-3), 9-17(2004). https://doi.org/10.1016/S0038-092X(03)00101-4
  3. Han, J. H., Ahn, Y. C., Lee, J. U., and Lee, I. B., "Optimal Strategy for Carbon Capture and Storage Infrastructure: A Review," Korean J. Chem. Eng., 29(8), 975-984(2012). https://doi.org/10.1007/s11814-012-0083-3
  4. de Gorter, H. and Y. Tsur, "Cost-benefit Tests for GHG Emissions from Biofuel Production," Eur. Rev. Agric. Econ., 37(2), 133-145 (2010). https://doi.org/10.1093/erae/jbq014
  5. Kauffman, N., Hayes, D. and Brown, R., "A Life Cycle Assessment of Advanced Biofuel Production from a Hectare of Corn," Fuel, 90(11), 3306-3314(2011). https://doi.org/10.1016/j.fuel.2011.06.031
  6. Zabaniotou, A. and Andreou, K., "Development of Alternative Energy Sources for GHG Emissions Reduction in the Textile Industry by Energy Recovery from Cotton Ginning Waste," J. Clean Prod., 18(8), 784-790(2010). https://doi.org/10.1016/j.jclepro.2010.01.006
  7. Chakraborty, S., Aggarwal, V., Mukherjee, D. and Andras, K., "Biomass to Biofuel: a Review on Production Technology," Asia-Pac. J. Chem. Eng., 7, S254-S262(2012). https://doi.org/10.1002/apj.1642
  8. Ho, D. P., Ngo, H. H. and Guo, W., "A Mini Review on Renewable Sources for Biofuel," Bioresour. Technol., 169, 742-749(2014). https://doi.org/10.1016/j.biortech.2014.07.022
  9. Vassilev, S.V. and Vassileva, C. G., "Composition, Properties and Challenges of Algae Biomass for Biofuel Application: An Overview," Fuel, 181, 1-33(2016). https://doi.org/10.1016/j.fuel.2016.04.106
  10. Alam, F., Mobin, S. and Chowdhury, H., "Third Generation Biofuel from Algae," Procedia Eng., 105, 763-768(2015). https://doi.org/10.1016/j.proeng.2015.05.068
  11. Alam, M. A., Wang, Z. and Yuan, Z., "Generation and Harvesting of Microalgae Biomass for Biofuel Production, in Prospects and Challenges in Algal Biotechnology," 2017, Springer. p. 89-111.
  12. Shemfe, M. B., Gu, S. and Ranganathan, P., "Techno-economic Performance Analysis of Biofuel Production and Miniature Electric Power Generation from Biomass Fast Pyrolysis and Bio-oil Upgrading," Fuel, 143, 361-372(2015). https://doi.org/10.1016/j.fuel.2014.11.078
  13. Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A. and Kothandaraman, G., "Techno-economic Comparison of Biomass-to-transportation Fuels Via Pyrolysis, Gasification, and Biochemical Pathways," Fuel, 89, S29-S35(2010). https://doi.org/10.1016/j.fuel.2010.07.015
  14. Han, J., Luterbacher, J.S., Alonso, D.M., Dumesic, J.A. and Maravelias, C.T., "A lignoCellulosic Ethanol Strategy via Nonenzymatic Sugar Production: Process Synthesis and Analysis," Bioresour. Technol., 182, 258-266(2015). https://doi.org/10.1016/j.biortech.2015.01.135
  15. Han, J., Sen, S. M., Luterbacher, J. S., Alonso, D. M., Dumesic, J. A. and Maravelias, C. T., "Process Systems Engineering Studies for the Synthesis of Catalytic Biomass-to-fuels Strategies," Comput. Chem. Eng., 81, 57-69(2015). https://doi.org/10.1016/j.compchemeng.2015.04.007
  16. Byun, J. and Han, J., "Catalytic Production of Biofuels (butene oligomers) and Biochemicals (tetrahydrofurfuryl alcohol) from Corn Stover," Bioresour. Technol., 211, 360-366(2016). https://doi.org/10.1016/j.biortech.2016.03.123
  17. Byun, J. and Han, J., "An Integrated Strategy for Catalytic Co-Production of Jet Fuel Range Alkenes, Tetrahydrofurfuryl Alcohol, and 1, 2-pentanediol from Lignocellulosic Biomass," Green Chem., 19(21), 5214-5229(2017). https://doi.org/10.1039/C7GC02368E
  18. Davis, R., Aden, A. and Pienkos, P. T., "Techno-economic Analysis of Autotrophic Microalgae for Fuel Production," Appl. Energy, 88(10), 3524-3531(2011). https://doi.org/10.1016/j.apenergy.2011.04.018
  19. Byun, J., Ahn, Y., Kim, J., Kim, J. R., Jeong, S. Y., Kim, B. S., Kim, H. J. and Han, J., "Integrated Process for Electrocatalytic Conversion of Glycerol to Chemicals and Catalytic Conversion of Corn Stover to Fuels," Energy Conv. Manag., 163, 180-186(2018). https://doi.org/10.1016/j.enconman.2018.02.059
  20. An, H., Wilhelm, W. E. and Searcy, S. W., "Biofuel and Petroleum-based Fuel Supply Chain Research: a Literature Review," Biomass Bioenerg., 35(9), 3763-3774(2011). https://doi.org/10.1016/j.biombioe.2011.06.021
  21. Ahn, Y. C., Lee, I. B., Lee, K. H. and Han, J. H., "Strategic Planning Design of Microalgae Biomass-to-biodiesel Supply Chain Network: Multi-period Deterministic Model," Appl. Energy., 154, 528-542(2015). https://doi.org/10.1016/j.apenergy.2015.05.047
  22. Delrue, F., Li-Beisson, Y., Setier, P. A., Sahut, C., Roubaud, A., Froment, A. K. and Peltier, G., "Comparison of Various Microalgae Liquid Biofuel Production Pathways Based on Energetic, Economic and Environmental Criteria," Bioresour. Technol., 136, 205-212 (2013). https://doi.org/10.1016/j.biortech.2013.02.091
  23. Batan, L. Y., Graff, G. D. and Bradley, T. H., "Techno-economic and Monte Carlo Probabilistic Analysis of Microalgae Biofuel Production System," Bioresour. Technol., 219, 45-52(2016). https://doi.org/10.1016/j.biortech.2016.07.085
  24. Thilakaratne, R., Wright, M. M. and Brown, R. C., "A Technoeconomic Analysis of Microalgae Remnant Catalytic Pyrolysis and Upgrading to Fuels," Fuel, 128, 104-112(2014). https://doi.org/10.1016/j.fuel.2014.02.077
  25. Dutta, S., Neto, F. and Coelho, M. C., "Microalgae Biofuels: A Comparative Study on Techno-economic Analysis & Life-cycle Assessment," Algal Res., 20, 44-52(2016). https://doi.org/10.1016/j.algal.2016.09.018
  26. Xin, C., Addy, M. M., Zhao, J., Cheng, Y., Cheng, S., Mu, D., Liu, Y., Ding, R., Chen, P. and Ruan, R., "Comprehensive Technoeconomic Analysis of Wastewater-based Algal Biofuel Production: a Case Study," Bioresour. Technol., 211, 584-593(2016). https://doi.org/10.1016/j.biortech.2016.03.102
  27. Ou, L., Thilakaratne, R., Brown, R. C. and Wright, M. M., "Technoeconomic Analysis of Transportation Fuels from Defatted Microalgae via Hydrothermal Liquefaction and Hydroprocessing," Biomass Bioenerg., 72, 45-54(2015). https://doi.org/10.1016/j.biombioe.2014.11.018
  28. Kim, S. H., Yoon, S. G., Chae, S. H. and Park, S., "Economic and Environmental Optimization of a Multi-site Utility Network For an Industrial Complex," J. Environ. Manage., 91(3), 690-705 (2010). https://doi.org/10.1016/j.jenvman.2009.09.033
  29. Vuarnoz, D., Kitanovski, A., Gonin, C., Borgeaud, Y., Delessert, M., Meinen, M. and Egolf, P. W., "Quantitative Feasibility Study of Magnetocaloric Energy Conversion Utilizing Industrial Waste Heat," Appl. Energy, 100, 229-237(2012). https://doi.org/10.1016/j.apenergy.2012.04.051
  30. Rudberg, M., Waldemarsson, M. and Lidestam, H., "Strategic Perspectives on Energy Management: A Case Study in the Process Industry," Appl. Energy, 104, 487-496(2013). https://doi.org/10.1016/j.apenergy.2012.11.027
  31. Han, J.-H., Ahn, Y.-C. and Lee, I.-B., "A Multi-objective Optimization Model for Sustainable Electricity Generation and $CO_{2}$ Mitigation (EGCM) Infrastructure Design Considering Economic Profit and Financial Risk," Appl. Energy, 95, 186-195(2012). https://doi.org/10.1016/j.apenergy.2012.02.032
  32. Han, J.-H. and Lee, I.-B., "A Systematic Process Integration Framework for the Optimal Design and Techno-economic Performance Analysis of Energy Supply and $CO_2$ Mitigation Strategies," Appl. Energy, 125, 136-146(2014). https://doi.org/10.1016/j.apenergy.2014.03.057
  33. Huang, Y., Chen, C.-W. and Fan, Y., "Multistage Optimization of the Supply Chains of Biofuels," Transp. Res. Pt. e-Logist. Transp. Rev., 46(6), 820-830(2010). https://doi.org/10.1016/j.tre.2010.03.002
  34. Sharifzadeh, M., Garcia, M. C. and Shah, N., "Supply Chain Network Design and Operation: Systematic Decision-making for Centralized, Distributed, and Mobile Biofuel Production Using Mixed Integer Linear Programming (MILP) Under Uncertainty," Biomass Bioenerg., 81, 401-414(2015). https://doi.org/10.1016/j.biombioe.2015.07.026
  35. Lim, M. K. and Ouyang, Y., "Biofuel Supply Chain Network Design and Operations, in Environmentally Responsible Supply Chains," Springer. p. 143-162(2016).
  36. Kim, J., Realff, M. J., Lee, J. H., Whittaker, C. and Furtner, L., "Design of Biomass Processing Network for Biofuel Production Using an MILP Model," Biomass Bioenerg., 35(2), 853-871(2011). https://doi.org/10.1016/j.biombioe.2010.11.008
  37. Yu, J., Lee, I. B., Han, J. and Ahn, Y., "Stochastic Approach to Optimize the Supply Chain Network of Microalga-Derived Biodiesel under Uncertain Diesel Demand," J. Chem. Eng. Jpn., 53(1), 24-35( 2020). https://doi.org/10.1252/jcej.19we110
  38. Kim, J., Johnson, T. A., Miller, J. E., Stechel, E. B. and Maravelias, C. T., "Fuel Production from $CO_2$ Using Solar-thermal Energy: System Level Analysis," Energy Environ. Sci., 5(9), 8417-8429(2012). https://doi.org/10.1039/c2ee21798h
  39. Kim, J., Lee, Y. and Moon, I., "Optimization of a Hydrogen Supply Chain Under Demand Uncertainty," Int. J. Hydrog. Energy, 33(18), 4715-4729(2008). https://doi.org/10.1016/j.ijhydene.2008.06.007