DOI QR코드

DOI QR Code

Identifying Regional Tourism Resources Using Webometric Network Analysis: A case of Suseong-gu in Daegu, South Korea

웹보메트릭스를 활용한 지역관광자원 발굴 및 네트워크 분석: 대구 수성구를 중심으로

  • Song, Hwa Young (Interdisciplinary Program of Digital Convergence Business, Yeung-nam University) ;
  • Zhu, Yu Peng (Interdisciplinary Program of Digital Convergence Business, Yeung-nam University) ;
  • Kim, Ji Eun (Interdisciplinary Program of Digital Convergence Business, Yeung-nam University) ;
  • Oh, Jung Hyun (SOCE Inc.) ;
  • Park, Han Woo (Interdisciplinary Program of Digital Convergence Business, Department of Media and Communication, Yeung-nam University)
  • 송화영 (영남대학교 디지털융합비즈니스학과) ;
  • 주우붕 (영남대학교 디지털융합비즈니스학과) ;
  • 김지은 (영남대학교 디지털융합비즈니스학과) ;
  • 오정현 ((주)소스) ;
  • 박한우 (영남대학교 디지털융합비즈니스학과, 언론정보학과)
  • Received : 2020.03.30
  • Accepted : 2020.07.03
  • Published : 2020.07.31

Abstract

The purpose of present study is to identify the regional tourism resources using Webometric network analysis. The study focuses on Suseong area in Daegu metropolitan city. Various kinds of web-based data, for example, hit counts, online news, and public comments, were used to discover hot places and people's responses. The research question is, 'First, what is the optimum level of the search engine for suseong? Second, what is the online appearance of tourist resources in suseong? Which region is the center of tourism with high levels of emergence? Third, what are the main contents of news articles and comments related to the Suseong pond?'. The results show that the search engine optimization level in Suseong is lower than that in other areas in Daegu. In other words, tourism information and contents regarding Suseong are not highly visible on cyber space. Importantly, Suseong pond had the highest online presence. A close analysis of both online news and users' comments on Suseong pond, however, revealed the biggest concern as calling for improving public accessibility to tourism infrastructure. The findings are expected to contribute to policy development and service operation related to tourism resources in Suseong.

이 연구는 웹보메트릭스를 활용한 지역관광자원 발굴 및 뉴스 네트워크를 대구 수성구를 중심으로 분석한 연구이다. 데이터는 Bing, Naver 등 웹 데이터를 사용했으며, 네트워크 분석과 댓글 분석을 하였다. 연구문제는 총 세가지로 첫째, 대구 내부에서 수성구의 검색엔진 최적화 수준은 어떠한가? 둘째, 수성구 관광자원의 온라인 출현도는 어떠한가? 셋째, 높은 온라인 출현도를 보이는 관광자원의 뉴스 기사와 댓글은 어떤 내용이 주를 이루는가?이며 그 결과를 보면 첫째, 수성구는 검색엔진 최적화 수준이 대구 내부에서 하위권에 속하며 이는 수성구 관광을 언급한 자료들의 온라인 가시성이 미약한 수준임을 알 수 있다. 둘째, 수성구에서 온라인 출현도가 높은 관광자원들은 대부분 수성못 중심이다. 셋째, 수성못 언론 보도의 내용과 댓글을 살펴본 결과 수성못 교통문제와 열대야가 최대 관심사로 나타나, 관광기반시설에 대한 접근성 개선과 관광자원 개발이 요구된다. 이러한 분석결과는 수성구 관광자원 관련 정책의 개발 및 서비스 운영에 기여 할 수 있고 지역 경제에 대한 해답이 될 것이다.

Keywords

References

  1. L. U. Calderwood, M. Soshkin, The Travel & Tourism Competitiveness Report 2019, Insight Report, World Economic Forum, Switzerland, pp.65.
  2. M. Bohlin, D. Brandt, J. Elbe, "Tourism as a vehicle for regional development in peripheral areas - myth or reality?: A longitudinal case study of Swedish regions.", European Planning Studies, Vol.24, No.10, pp.1788-1805, 2016. DOI: https://doi.org/10.1080/09654313.2016.1194807
  3. D. Felsenstein, A. Fleischer, "Local Festivals and Tourism Promotion: The Role of Public Assistance and Visitor Expenditure.", Journal of Travel Research, Vol.41, No.4, pp.385-392, 2003. DOI: https://doi.org/10.1177/0047287503041004007
  4. D. H. Park, T. G. Kim, G. H. Lee, "An analysis of tourism information network using social big data: Focusing on Seoul and Jeju Island", International Journal of Tourism and Hospitality Research, Vol.30, No.8, pp.195-208, 2016. DOI: http://dx.doi.org/10.21298/IJTHR.2016.08.30.8.195
  5. G. Ashworth, S. J. Page, "Urban Tourism Research: Recent Progress and Current Paradoxes.", Tourism Management, Vol.32, No.1, pp.1-15, 2011. DOI: https://doi.org/10.1016/j.tourman.2010.02.002
  6. H. A. Lee, N. H. Chung, Y. J. Nam, "Do online information sources really make tourists visit more diverse places?: Based on the social networking analysis.", Information Processing & Management, Vol.56, No.4, pp.1376-1390, 2019. DOI: https://doi.org/10.1016/j.ipm.2018.01.005
  7. H. W. Park, K. H. Choi, "Doing social big data analytics: A reflection on research question, data format, and statistical test-Convergent aspects", The Journal of Digital Policy & Management, Vol.14, No.12, pp.591-597, 2016. DOI: https://doi.org/10.14400/JDC.2016.14.12.591
  8. M. K. Lee, H. W. Park, "Web Log Analysis on Tourism on Tourism Websites of Daegu city using Naver Analytics", Tourism Research, Vol.33, No.5, pp.175-195, 2018. DOI: https://doi.org/10.21719/IJTMS.33.5.9
  9. Y. J. Nam, "Activation of Tourism Industry and Media", Korea Tourism Policy, Vol.66, No.10, pp.70-74, 2016.
  10. C. S. Lee, J. W. Lee, "A study for the Assessment Framework of search Engine optimization and its Implementation", The Journal of Internet Electronic Commerce Research, Vol.12, No.4, pp.273-288, 2012. UCI: G704-001762.2012.12.4.014
  11. W. T. Krizinger, M. Wedieman, "Parallel search engine optimisation and pay-per-click campaigns: A comparison of cost per acquisition", South African Journal of Information Management, Vol.19, No.1, pp.1-13, 2017. DOI: https://doi.org/10.17255/etr.12.3.201408.1
  12. R. S. Bhandari, A. Bansal, "Impact of Search Engine Optimization as a Marketing Tool.", Jindal Journal of Business Research, Vol.7, No.1, pp.23-36, 2018. DOI: https://doi.org/10.1177/2278682117754016
  13. I. H. Kim, S. C. Kim, "An Approach to the Usage Level and Performance of Search Engine Optimization in Korean Exporting Enterprises-Focused on Small-Medium Size Exporting Firms of Daegu.Gyeonbuk Province", E-Trade Research, Vol.12, No.3, pp.1-26, 2014. DOI: https://doi.org/10.17255/etr.12.3.201408.1
  14. M. K. Lee, H. W. Park, "Smart Tourism Destination(STD) Utilizing Public Big Data and Infographics", Tourism Research, Vol.30, No.5, pp.227-244, 2015. UCI: G704-000941.2015.30.5.028
  15. S. Y. Ryu, S. W. Yoo, "A study on the perceptions and interests of tourists to Gangwon-do: Focusing on social media big data analysis", International Journal of Tourism and Hospitality Research, Vol.31, No.2, pp.63-81, 2017. DOI: https://doi.org/10.21298/IJTHR.2017.02.31.2.63
  16. J. Raun, R. Ahas, M. Tiru, "Measuring tourism destinations using mobile tracking data", Tourism Management, Vol.57, No.C, pp.202-212, 2016. DOI: https://doi.org/10.1016/j.tourman.2016.06.006
  17. J. de D. Romero Palop, J. Murillo Arias, D. J. Bodas-Sagi, H. Valero Lapaz, "Determining the usual environment of cardholders as a key factor to measure the evolution of domestic tourism", Information Technology & Tourism, Vol.21, No.1, pp.23-43, 2019. DOI: https://doi.org/10.1007/s40558-018-0130-y
  18. S. M. Lee, "A study on Strategy for Busan Tourism Based on Big Data Analysis", Culinary Science & Hospitality Research, Vol.26, No,1, pp.169-176, 2020. DOI: https://doi.org/10.20878/cshr.2020.26.1.017
  19. S. H. Lee, D. H. Park,, M. S. Kim, "A Study of Perceptions of Jeju-Island Tourism using Social Media Big Data Analysis: Before and after the Outbreak of Ban on Korean entertainer's", Tourism & Leisure Research, Vol.30, No.2, pp.55-75, 2018. https://doi.org/10.31336/JTLR.2018.05.30.5.55
  20. M. K. Lee, H. Y. Yoon, H. W. Park, "From online via offline to online: how online visibility of tourism infomation shapes and is shaped by offline visits", Journal of Travel & Tourism Marketing, Vol.34, No.9, pp.1143-1154, 2017. DOI: https://doi.org/10.1080/10548408.2017.1330727
  21. H. W. Park, S. J. Park, "Big Data Analysis of Cryptocurrencies : Evidence from Top Cryptocurrency Websites", Journal of Korean Data Analysis Society, Vol.20, No.2, pp.923-936, 2018. https://doi.org/10.37727/jkdas.2018.20.2.923
  22. M. Lee, H. Yoon, H. W. Park, "Network Analysis of Tourist Destinations : The Case of Daegu City, South Korea.", Journal of the Korean Data Analysis Society, Vol.19, No.3, pp.1155-1165, 2017. https://doi.org/10.37727/jkdas.2017.19.3.1155
  23. H. Xu, L. Cheng, "The QAP weighted network analysis method and its application in international services trade." Physica A, Vol.448, No.C, pp.91-101, 2016. DOI: https://doi.org/10.1016/j.physa.2015.12.094.
  24. Y. S. Oh, Daegu Love, Daegu Travel, p.287, Daegu: Guru Publisher, 2018.
  25. D. J. Kim, "A Study of Structural Relationship among Attractiveness, Image and Loyalty - Focusing on Daegu Suseong Lake Festiva", Journal of Korea Entertainment Industry Association, Vol.11, No.4, pp.1-11, 2017. DOI: https://doi.org/10.21184/jkeia.2017.06.11.4.1
  26. B. Dutta, "Searching, Searching, Every Where, How to Find My Bit?:The New Paradigm", Journal of Scientometric Research, Vol.9, No.1, pp.85-87, 2020. DOI: https://doi.org/10.5530/jscires.9.1.11
  27. D. H. Kim, "A Case Study of Producing Infographics Using Tableau Public", Spatial Information Research, Vol.23, No.2, pp. 21-29, 2015. DOI: https://doi.org/10.12672/ksis.2015.23.2.021
  28. M. Omar, A. Mehmood, G. S. Choi, H. W. Park, "Global mapping of artificial intelligence in Google and Google Scholar", Scientometrics, Vol.113, No.3, pp.1269 1305, 2017. DOI: https://doi.org/10.1007/s11192-017-2534-4
  29. R. Kumar, "Webometric Analysis of NIRF-ranked Institurions", Libraries in the Sharing Economy, Vol.1, NO.12, pp.156-169, 2018.
  30. M. Mohammadi, R. Saeedi, M. Mansouri, M. Banisaffar, A. Mahimani, M. A. Shahri, M. Yadgari, "Evaluation of Effective indicators on Promotion of Webometric Rank of Golestan University of Medical Sciences Website", Webology, Vol.16, No.2, pp.242-256, 2019 DOI: https://doi.org/10.14704/WEB/V16I2/a201
  31. S. Acharya, H. W. Park, "Open data in Nepal: a webometric network analysis", Quality & Quantity, Vol.51, No.3, pp.1027-1043, 2017. DOI: https://doi.org/10.1007/s11135-016-0379-1
  32. S. Park, H. W. Park, "Diffusion of cryptocurrencies: web traffic and social network attributes as indicators of cryptocurrency performance", Quality & Quantity, Vol.54, No.1, pp.297-314, 2020. DOI: https://doi.org/10.1007/s11135-019-00840-6
  33. M. Makhortykh, A. Urman, R. Ulloa, "How search engines disseminate information about COVID19 and why they should do better", HKS Mis Information Review, Vol.1, No.1, pp.1-12, 2020. DOI: https://doi.org/10.37016/mr-2020-017
  34. M, Weideman, "Fake news: the role of search engines and website content", Limerick Institute of Technology, Vol.1, No.3, pp.26-35, 2018. URI: http://hdl.handle.net/11189/6963
  35. M. Hasan, S. Moumie, R. Mohammad, "A framework for dynamic indexing from hidden web", International Journal of Computer Science Issues, Vol.8, No.2, pp.249-258, 2011.
  36. C. J. Chung, M. J. Kim, H. W. Park, "Big Data Analysis and Modeling of Disinformation Consumption and Diffusion on YouTube", Discourse and Policy in Social Science, Vol.12, No.2, pp.105-138, 2019. DOI: https://doi.org/10.22417/DPSS.2019.10.12.2.105
  37. Y. P. Zhu, H. W. Park, "Evaluating Blockchain Research Trend using Bibliometrics-based Network Analysis", Journal of Digital Convergence, Vol.17, No.6, pp.219-227, 2019. DOI: https://doi.org/10.14400/JDC.2019.17.6.219
  38. V. D. Blondel, J. L. Guillaume, R. Lambiotte, E. Lefebvre, "Fast unfolding of communities in large networks.", Journal of Statistical Mechanics, Vol.2008, No.10, pp.p10008, 2008. DOI: https://doi.org/10.1088/1742-5468/2008/10/P10008
  39. D. J. Kim, S, K. Lee, "A Study on the Effects of Local Resident's Social-Cultural Influence and Environmental Impact on Festival Satisfaction and Local Pride : In case of the 3rd Suseong Lake Festival", International Journal of Tourism Management and Sciences, Vol.33, No.1, pp.253-273, 2018. DOI: https://dx.doi.org/10.21719/IJTMS.33.1.13